Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jérôme Couturier is active.

Publication


Featured researches published by Jérôme Couturier.


Oncogene | 1997

A new member of the ETS family fused to EWS in Ewing tumors

Martine Peter; Jérôme Couturier; Hélène Pacquement; Jean Michon; Gilles Thomas; Henri Magdelenat; Olivier Delattre

As a result of chromosome translocations, the EWS gene is fused to a variety of transcription factors in human solid neoplasia. In Ewing tumors EWS can be fused to four different members of the ETS family, namely FLI-1, ERG, ETV1 and E1AF. We have identified a new member of the ETS family, called FEV, which is fused to EWS in a subset of Ewing tumors. FEV encodes a 238 amino acid protein which contains an ETS DNA binding domain closely related to that of FLI-1 and ERG. However, the N-terminal portion of FEV is only 42 amino acids long which suggests that FEV is lacking important transcription regulatory domains contained in FLI-1 and ERG N-terminal parts. The C-terminal end of FEV is rich in alanine residues which may indicate that FEV is a transcription repressor. The FEV gene is encoded by three exons and is located on chromosome 2. FEV expression was only detected in adult prostate and small intestine but not in other adult nor in fetal tissues, thus indicating that FEV has a restricted expression pattern. Following a scheme similar to previously described translocations in Ewing tumors, a t(2;22) chromosome translocation fuses the N-terminal domain of EWS to the ETS DNA binding domain of FEV.


Nature | 2011

A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma

Corine Bertolotto; Fabienne Lesueur; Sandy Giuliano; Thomas Strub; Mahaut de Lichy; Karine Bille; Philippe Dessen; Benoit d'Hayer; Hamida Mohamdi; Audrey Remenieras; Eve Maubec; Arnaud de la Fouchardière; Vincent Molinié; Pierre Vabres; Stéphane Dalle; Nicolas Poulalhon; Tanguy Martin-Denavit; Luc Thomas; Pascale Andry-Benzaquen; Nicolas Dupin; F. Boitier; Annick Rossi; Jean Luc Perrot; B. Labeille; Caroline Robert; Bernard Escudier; Olivier Caron; Laurence Brugières; Simon Saule; Betty Gardie

So far, no common environmental and/or phenotypic factor has been associated with melanoma and renal cell carcinoma (RCC). The known risk factors for melanoma include sun exposure, pigmentation and nevus phenotypes; risk factors associated with RCC include smoking, obesity and hypertension. A recent study of coexisting melanoma and RCC in the same patients supports a genetic predisposition underlying the association between these two cancers. The microphthalmia-associated transcription factor (MITF) has been proposed to act as a melanoma oncogene; it also stimulates the transcription of hypoxia inducible factor (HIF1A), the pathway of which is targeted by kidney cancer susceptibility genes. We therefore proposed that MITF might have a role in conferring a genetic predisposition to co-occurring melanoma and RCC. Here we identify a germline missense substitution in MITF (Mi-E318K) that occurred at a significantly higher frequency in genetically enriched patients affected with melanoma, RCC or both cancers, when compared with controls. Overall, Mi-E318K carriers had a higher than fivefold increased risk of developing melanoma, RCC or both cancers. Codon 318 is located in a small-ubiquitin-like modifier (SUMO) consensus site (ΨKXE) and Mi-E318K severely impaired SUMOylation of MITF. Mi-E318K enhanced MITF protein binding to the HIF1A promoter and increased its transcriptional activity compared to wild-type MITF. Further, we observed a global increase in Mi-E318K-occupied loci. In an RCC cell line, gene expression profiling identified a Mi-E318K signature related to cell growth, proliferation and inflammation. Lastly, the mutant protein enhanced melanocytic and renal cell clonogenicity, migration and invasion, consistent with a gain-of-function role in tumorigenesis. Our data provide insights into the link between SUMOylation, transcription and cancer.


The Journal of Pathology | 2009

Merkel cell carcinoma of the skin: pathological and molecular evidence for a causative role of MCV in oncogenesis†

Xavier Sastre-Garau; Martine Peter; Marie-Françoise Avril; Hélène Laude; Jérôme Couturier; Flore Rozenberg; Anna Almeida; F. Boitier; A. Carlotti; B. Couturaud; Nicolas Dupin

Merkel cell carcinoma (MCC), a skin tumour with neuroendocrine features, was recently found to be associated with a new type of human polyomavirus, called Merkel cell virus (MCV). We investigated the specificity of this association as well as a causal role of MCV in oncogenesis. DNA and RNA from ten cases of MCC were analysed using PCR and RT‐PCR. DNA from 1241 specimens of a wide range of human tumours was also analysed. The DIPS technique was used to identify the integration locus of viral DNA sequences. Array CGH was performed to analyse structural alterations of the cell genome. MCV DNA sequences were found in all ten cases of MCC and in none of the 1241 specimens of other tumour types. Clonal integration of MCV into the host genome was seen in all MCC cases and was checked by FISH in one case. A recurrent pattern of conserved viral sequences which encompassed the replication origin, the small tumour (ST), and the 5′ part of the large tumour (LT) antigen DNA sequences was observed. Both ST and LT viral sequences were found to be significantly expressed in all MCCs. Neither recurrent site of integration nor alteration of cellular genes located near the viral sequences was observed. The tight association of MCV with MCC, the clonal pattern of MCV integration, and the expression of the viral oncoproteins strongly support a causative role for MCV in the tumour process. This information will help the development of novel approaches for the assessment and therapy of MCC and biologically related tumours. Copyright


Journal of Clinical Oncology | 2009

Overall Genomic Pattern Is a Predictor of Outcome in Neuroblastoma

Isabelle Janoueix-Lerosey; Gudrun Schleiermacher; Evi Michels; Véronique Mosseri; Agnès Ribeiro; Delphine Lequin; Joëlle Vermeulen; Jérôme Couturier; Michel Peuchmaur; Alexander Valent; Dominique Plantaz; Hervé Rubie; Dominique Valteau-Couanet; Caroline Thomas; Valérie Combaret; Raphael Rousseau; Angelika Eggert; Jean Michon; Frank Speleman; Olivier Delattre

PURPOSE For a comprehensive overview of the genetic alterations of neuroblastoma, their association and clinical significance, we conducted a whole-genome DNA copy number analysis. PATIENTS AND METHODS A series of 493 neuroblastoma (NB) samples was investigated by array-based comparative genomic hybridization in two consecutive steps (224, then 269 patients). RESULTS Genomic analysis identified several types of profiles. Tumors presenting exclusively whole-chromosome copy number variations were associated with excellent survival. No disease-related death was observed in this group. In contrast, tumors with any type of segmental chromosome alterations characterized patients with a high risk of relapse. Patients with both numerical and segmental abnormalities clearly shared the higher risk of relapse of segmental-only patients. In a multivariate analysis, taking into account the genomic profile, but also previously described individual genetic and clinical markers with prognostic significance, the presence of segmental alterations with (HR, 7.3; 95% CI, 3.7 to 14.5; P < .001) or without MYCN amplification (HR, 4.5; 95% CI, 2.4 to 8.4; P < .001) was the strongest predictor of relapse; the other significant variables were age older than 18 months (HR, 1.8; 95% CI, 1.2 to 2.8; P = .004) and stage 4 (HR, 1.8; 95% CI, 1.2 to 2.7; P = .005). Finally, within tumors showing segmental alterations, stage 4, age, MYCN amplification, 1p and 11q deletions, and 1q gain were independent predictors of decreased overall survival. CONCLUSION The analysis of the overall genomic pattern, which probably unravels particular genomic instability mechanisms rather than the analysis of individual markers, is essential to predict relapse in NB patients. It adds critical prognostic information to conventional markers and should be included in future treatment stratification.


The American Journal of Surgical Pathology | 2008

Renal translocation carcinomas: clinicopathologic, immunohistochemical, and gene expression profiling analysis of 31 cases with a review of the literature.

Philippe Camparo; Viorel Vasiliu; Vincent Molinié; Jérôme Couturier; Karl Dykema; David Petillo; Kyle A. Furge; Eva Comperat; Marick Laé; Raymonde Bouvier; Liliane Boccon-Gibod; Yves Denoux; Sophie Ferlicot; Eric Forest; Gaëlle Fromont; Marie C. Hintzy; Myriam Laghouati; Mathilde Sibony; Marie L. Tucker; Nina Weber; Bin Tean Teh; Annick Vieillefond

We report clinicopathologic features of a large series of renal translocation carcinomas from a multicentric study. Diagnosis was performed by cytogenetic examination of fresh material and/or by immunochemistry with antibodies directed against the C-terminal part of transcription factor E3 (TFE3) and native transcription factor EB (TFEB) proteins. Clinical data, follow-up, and histologic features were assessed. Antibodies against CK7, CD10, vimentin, epithelial membrane antigen, AE1-AE3, E-cadherin, α-methylacyl-coenzyme A racemase, melan A, and HMB45 were tested on tissue microarrays. Whole-genome microarray expression profiling was performed on 4 tumors. Twenty-nine cases were diagnosed as TFE3 and 2 as TFEB renal translocation carcinomas, including 13 males and 18 females, mean age 24.6 years. Two patients had a previous history of chemotherapy and 1 had a history of renal failure. Mean size of the tumor was 6.9 cm. Thirteen cases were ≥pT3 stage. Twelve cases were N+ or M+. Mean follow-up was 29.5 months. Three patients presented metastases and 5 have died. Mixed papillary and nested patterns with clear and/or eosinophilic cells represented the most consistent histologic appearance, with common foci of calcifications regardless of the type of translocation. Using a 30 mn incubation at room temperature, TFE3 immunostainings were positive in only 82% of our TFE3 translocation carcinomas. Both TFE3 and TFEB renal translocation carcinomas expressed CD10 and α-methylacyl-coenzyme A racemase in all cases. An expression of E-cadherin was observed in two-third of cases. Cytokeratins were expressed in less than one-third of cases. Melanocytic markers were expressed at least weakly in all cases except two. Unsupervised clustering on the basis of the gene expression profiling indicated a distinct subgroup of tumors. TRIM 63 glutathione S-transferase A1 and alanyl aminopeptidase are the main differentially expressed genes for this group of tumors. Our results suggest that these differentially expressed genes may serve as novel diagnostic or prognostic markers.


Chromosoma | 1976

Sequence of DNA replication in 277 R- and Q-bands of human chromosomes using a BrdU treatment.

B. Dutrillaux; Jérôme Couturier; Claude-Lise Richer; Evani Viegas-Péquignot

Replication times for all important chromosome bands, of both types R and Q (277 structures) are analysed. — The R-bands form a group of structures whose DNA replicates during the early S-phase, while the DNA situated in the Q-bands replicates during the late S-phase. — There may not exist overlapping between replication times of these two types of structures. — The widest R-bands are those which are the earliest to replicate; in general, the most intense Q-bands are those which are the latest to replicate. Especially among these last ones, a certain asynchronism exists between the replication times. Finally the heterochromatin of chromosomes 1, 16 and Y and of the short arms of the acrocentrics could contain two types of DNA which replicate at different times.


Annals of Oncology | 2010

Assessing HER2 gene amplification as a potential target for therapy in invasive urothelial bladder cancer with a standardized methodology: results in 1005 patients

Marick Laé; Jérôme Couturier; S. Oudard; François Radvanyi; Philippe Beuzeboc; A. Vieillefond

Background: This study assessed the human epidermal growth factor receptor-2 (HER2) protein expression and its relationship with gene amplification in invasive bladder carcinoma, using the same criteria than for breast cancer. Patients and methods: In 1005 patients, paraffin-embedded tissues of transurethral resection or cystectomy were evaluated by immunohistochemistry (IHC), using antibodies against HER2. All samples with a 2+ or 3+ HER2 overexpression were evaluated by FISH. Results: HER2 overexpression was observed in 93 (9.2%) tumors (2+: 42 tumors and 3+: 51 tumors). Using FISH, all HER2 3+ tumors had a gene amplification, whereas no amplification was found in 2+ tumors. Intratumoral heterogeneity was observed in 35% of cases. These tumors showed the same heterogeneous pattern, with adjacent 3+ positive and negative areas by both IHC and FISH. Conclusions: This study showed that 5.1% of invasive bladder carcinomas had a HER2 gene amplification. These findings may have clinical implications for the management of patients with HER2-positive locally advanced or metastatic bladder cancer, as they could be potential candidates for targeted therapy.


PLOS ONE | 2007

HER2 Status in Ovarian Carcinomas: A Multicenter GINECO Study of 320 Patients

Marianne Tuefferd; Jérôme Couturier; Frédérique Penault-Llorca; Anne Vincent-Salomon; Philippe Broët; Jean-Paul Guastalla; Djelila Allouache; Martin Combe; B. Weber; Eric Pujade-Lauraine; Sophie Camilleri-Broët

Background Despite a typically good response to first-line combination chemotherapy, the prognosis for patients with advanced ovarian cancer remains poor because of acquired chemoresistance. The use of targeted therapies such as trastuzumab may potentially improve outcomes for patients with ovarian cancer. HER2 overexpression/amplification has been reported in ovarian cancer, but the exact percentage of HER2-positive tumors varies widely in the literature. In this study, HER2 gene status was evaluated in a large, multicentric series of 320 patients with advanced ovarian cancer, including 243 patients enrolled in a multicenter prospective clinical trial of paclitaxel/carboplatin-based chemotherapy. Methodology/Principal Findings The HER2 status of primary tumors and metastases was evaluated by both immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) analysis of paraffin-embedded tissue on conventional slides. The prognostic impact of HER2 expression was analyzed. HER2 gene was overexpressed and amplified in 6.6% of analyzed tumors. Despite frequent intratumoral heterogeneity, no statistically significant difference was detected between primary tumors and corresponding metastases. Conclusions/Significance Our results show that the decision algorithm usually used in breast cancer (IHC as a screening test, with equivocal results confirmed by FISH) is appropriate in ovarian cancer. In contrast to previous series, HER2-positive status did not influence outcome in the present study, possibly due to the fact that patients in our study received paclitaxel/carboplatin-based chemotherapy. This raises the question of whether HER2 status and paclitaxel sensitively are linked.


British Journal of Cancer | 2003

Agreement between chromogenic in situ hybridisation (CISH) and FISH in the determination of HER2 status in breast cancer

Laurent Arnould; Y Denoux; Gaëtan MacGrogan; Frédérique Penault-Llorca; M Fiche; Isabelle Treilleux; M C Mathieu; Anne Vincent-Salomon; M O Vilain; Jérôme Couturier

Determination of the HER2/neu (HER2) status in breast carcinoma has become necessary for the selection of breast cancer patients for trastuzumab therapy. Amplification of the gene analysed by fluorescence in situ hybridisation (FISH) or overexpression of the protein determined by immunohistochemistry (IHC) are the two major methods to establish this status. A strong correlation has been previously demonstrated between these two methods. However, FISH is not always feasible in routine practice and weakly positive IHC tumours (2+) do not always correspond to a gene amplification. Our study was performed in order to evaluate the contribution of chromogenic in situ hybridisation (CISH), which enables detection of the gene copies through an immunoperoxidase reaction. CISH was performed in 79 breast carcinomas for which the HER2 status was previously determined by IHC and FISH. The results of IHC, FISH and CISH were compared for each tumour. CISH procedures were successful in 95% of our cases. Whatever the IHC results, we found a very good concordance (96%) between CISH and FISH. Our study confirms that CISH may be an alternative to FISH for the determination of the gene amplification status in 2+ tumours. Our results allow us to think that, in many laboratories, CISH may also be an excellent method to calibrate the IHC procedures or, as a quality control test, to check regularly that the IHC signal is in agreement with the gene status.


Histopathology | 2003

Calibration of immunohistochemistry for assessment of HER2 in breast cancer: results of the French Multicentre GEFPICS Study*

Anne Vincent-Salomon; G MacGrogan; Jérôme Couturier; Laurent Arnould; Y Denoux; Maryse Fiche; Jocelyne Jacquemier; M-C Mathieu; F Penault-Llorca; C Rigaud; P Roger; I Treilleux; M-O Vilain; S Mathoulin-Pélissier; V. Le Doussal

Aims:  HER2 protein is over‐expressed in 15–30% of breast carcinomas. Immunohistochemistry (IHC) is a common and inexpensive method able to specifically detect HER2 protein. However, lack of standardization of IHC has been considered responsible for discrepancies in HER2 status assessment performed by IHC and fluorescence in‐situ hybridization (FISH). This prompted us to perform a multicentric IHC calibration test to achieve a maximum accuracy of HER2‐IHC compared with HER2‐FISH taken as the reference method.

Collaboration


Dive into the Jérôme Couturier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge