Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jerome Custers is active.

Publication


Featured researches published by Jerome Custers.


Cell | 2008

Adenovirus Serotype 5 Hexon Mediates Liver Gene Transfer

Simon N. Waddington; John H. McVey; David Bhella; Alan L. Parker; Kristeen Barker; Hideko Atoda; Rebecca Pink; Suzanne M. K. Buckley; Jenny A. Greig; Laura Denby; Jerome Custers; Takashi Morita; Ivo M. B. Francischetti; Robson Q. Monteiro; Dan H. Barouch; Nico van Rooijen; Claudio Napoli; Menzo Jans Emco Havenga; Stuart A. Nicklin; Andrew H. Baker

Adenoviruses are used extensively as gene transfer agents, both experimentally and clinically. However, targeting of liver cells by adenoviruses compromises their potential efficacy. In cell culture, the adenovirus serotype 5 fiber protein engages the coxsackievirus and adenovirus receptor (CAR) to bind cells. Paradoxically, following intravascular delivery, CAR is not used for liver transduction, implicating alternate pathways. Recently, we demonstrated that coagulation factor (F)X directly binds adenovirus leading to liver infection. Here, we show that FX binds to the Ad5 hexon, not fiber, via an interaction between the FX Gla domain and hypervariable regions of the hexon surface. Binding occurs in multiple human adenovirus serotypes. Liver infection by the FX-Ad5 complex is mediated through a heparin-binding exosite in the FX serine protease domain. This study reveals an unanticipated function for hexon in mediating liver gene transfer in vivo.


Journal of Immunology | 2004

Immunogenicity of Recombinant Adenovirus Serotype 35 Vaccine in the Presence of Pre-Existing Anti-Ad5 Immunity

Dan H. Barouch; Maria G. Pau; Jerome Custers; Wouter Koudstaal; Stefan Kostense; Menzo Jans Emco Havenga; Diana M. Truitt; Shawn M. Sumida; Michael G. Kishko; Janelle C. Arthur; Birgit Korioth-Schmitz; Michael H. Newberg; Darci A. Gorgone; Michelle A. Lifton; Dennis Panicali; Gary J. Nabel; Norman L. Letvin; Jaap Goudsmit

The high prevalence of pre-existing immunity to adenovirus serotype 5 (Ad5) in human populations may substantially limit the immunogenicity and clinical utility of recombinant Ad5 vector-based vaccines for HIV-1 and other pathogens. A potential solution to this problem is to use vaccine vectors derived from adenovirus (Ad) serotypes that are rare in humans, such as Ad35. However, cross-reactive immune responses between heterologous Ad serotypes have been described and could prove a major limitation of this strategy. In particular, the extent of immunologic cross-reactivity between Ad5 and Ad35 has not previously been determined. In this study we investigate the impact of pre-existing anti-Ad5 immunity on the immunogenicity of candidate rAd5 and rAd35 vaccines expressing SIV Gag in mice. Anti-Ad5 immunity at levels typically found in humans dramatically blunted the immunogenicity of rAd5-Gag. In contrast, even high levels of anti-Ad5 immunity did not substantially suppress Gag-specific cellular immune responses elicited by rAd35-Gag. Low levels of cross-reactive Ad5/Ad35-specific CD4+ T lymphocyte responses were observed, but were insufficient to suppress vaccine immunogenicity. These data demonstrate the potential utility of Ad35 as a candidate vaccine vector that is minimally suppressed by anti-Ad5 immunity. Moreover, these studies suggest that using Ad vectors derived from immunologically distinct serotypes may be an effective and general strategy to overcome the suppressive effects of pre-existing anti-Ad immunity.


Journal of Immunology | 2005

Neutralizing Antibodies to Adenovirus Serotype 5 Vaccine Vectors Are Directed Primarily against the Adenovirus Hexon Protein

Shawn M. Sumida; Diana M. Truitt; Angelique A. C. Lemckert; Ronald Vogels; Jerome Custers; Marylyn M. Addo; Shahin Lockman; Trevor Peter; Fred W. Peyerl; Michael G. Kishko; Shawn S. Jackson; Darci A. Gorgone; Michelle A. Lifton; Myron Essex; Bruce D. Walker; Jaap Goudsmit; Menzo Jans Emco Havenga; Dan H. Barouch

The utility of recombinant adenovirus serotype 5 (rAd5) vector-based vaccines for HIV-1 and other pathogens will likely be limited by the high prevalence of pre-existing Ad5-specific neutralizing Abs (NAbs) in human populations. However, the immunodominant targets of Ad5-specific NAbs in humans remain poorly characterized. In this study, we assess the titers and primary determinants of Ad5-specific NAbs in individuals from both the United States and the developing world. Importantly, median Ad5-specific NAb titers were >10-fold higher in sub-Saharan Africa compared with the United States. Moreover, hexon-specific NAb titers were 4- to 10-fold higher than fiber-specific NAb titers in these cohorts by virus neutralization assays using capsid chimeric viruses. We next performed adoptive transfer studies in mice to evaluate the functional capacity of hexon- and fiber-specific NAbs to suppress the immunogenicity of a prototype rAd5-Env vaccine. Hexon-specific NAbs were remarkably efficient at suppressing Env-specific immune responses elicited by the rAd5 vaccine. In contrast, fiber-specific NAbs exerted only minimal suppressive effects on rAd5 vaccine immunogenicity. These data demonstrate that functionally significant Ad5-specific NAbs are directed primarily against the Ad5 hexon protein in both humans and mice. These studies suggest a potential strategy for engineering novel Ad5 vectors to evade dominant Ad5-specific NAbs.


PLOS Medicine | 2006

Immune Protection of Nonhuman Primates Against Ebola Virus with Single Low-Dose Adenovirus Vectors Encoding Modified GPs

Nancy J. Sullivan; Thomas W. Geisbert; Joan B. Geisbert; Devon J. Shedlock; Ling Xu; Laurie Lamoreaux; Jerome Custers; Paul M. Popernack; Zhi Yong Yang; Maria G. Pau; Mario Roederer; Richard A. Koup; Jaap Goudsmit; Peter B. Jahrling; Gary J. Nabel

Background Ebola virus causes a hemorrhagic fever syndrome that is associated with high mortality in humans. In the absence of effective therapies for Ebola virus infection, the development of a vaccine becomes an important strategy to contain outbreaks. Immunization with DNA and/or replication-defective adenoviral vectors (rAd) encoding the Ebola glycoprotein (GP) and nucleoprotein (NP) has been previously shown to confer specific protective immunity in nonhuman primates. GP can exert cytopathic effects on transfected cells in vitro, and multiple GP forms have been identified in nature, raising the question of which would be optimal for a human vaccine. Methods and Findings To address this question, we have explored the efficacy of mutant GPs from multiple Ebola virus strains with reduced in vitro cytopathicity and analyzed their protective effects in the primate challenge model, with or without NP. Deletion of the GP transmembrane domain eliminated in vitro cytopathicity but reduced its protective efficacy by at least one order of magnitude. In contrast, a point mutation was identified that abolished this cytopathicity but retained immunogenicity and conferred immune protection in the absence of NP. The minimal effective rAd dose was established at 1010 particles, two logs lower than that used previously. Conclusions Expression of specific GPs alone vectored by rAd are sufficient to confer protection against lethal challenge in a relevant nonhuman primate model. Elimination of NP from the vaccine and dose reductions to 1010 rAd particles do not diminish protection and simplify the vaccine, providing the basis for selection of a human vaccine candidate.


Blood | 2009

Identification of coagulation factor (F)X binding sites on the adenovirus serotype 5 hexon: effect of mutagenesis on FX interactions and gene transfer

Raul Alba; Angela C. Bradshaw; Alan L. Parker; David Bhella; Simon N. Waddington; Stuart A. Nicklin; Nico van Rooijen; Jerome Custers; Jaap Goudsmit; Dan H. Barouch; John H. McVey; Andrew H. Baker

Recent studies have demonstrated the importance of coagulation factor X (FX) in adenovirus (Ad) serotype 5-mediated liver transduction in vivo. FX binds to the adenovirus hexon hypervariable regions (HVRs). Here, we perform a systematic analysis of FX binding to Ad5 HVRs 5 and 7, identifying domains and amino acids critical for this interaction. We constructed a model of the Ad5-FX interaction using crystallographic and cryo-electron microscopic data to identify contact points. Exchanging Ad5 HVR5 or HVR7 from Ad5 to Ad26 (which does not bind FX) diminished FX binding as analyzed by surface plasmon resonance, gene delivery in vitro, and liver transduction in vivo. Exchanging Ad5-HVR5 for Ad26-HVR5 produced deficient virus maturation. Importantly, defined mutagenesis of just 2 amino acids in Ad5-HVR5 circumvented this and was sufficient to block liver gene transfer. In addition, mutation of 4 amino acids in Ad5-HVR7 or a single mutation at position 451 also blocked FX-mediated effects in vitro and in vivo. We therefore define the regions and amino acids on the Ad5 hexon that bind with high affinity to FX thereby better defining adenovirus infectivity pathways. These vectors may be useful for gene therapy applications where evasion of liver transduction is a prerequisite.


Journal of Virology | 2011

Recombinant Adenovirus Serotype 26 (Ad26) and Ad35 Vaccine Vectors Bypass Immunity to Ad5 and Protect Nonhuman Primates against Ebolavirus Challenge

Thomas W. Geisbert; Michael Bailey; Lisa E. Hensley; Clement Asiedu; Joan B. Geisbert; Daphne Stanley; Anna N. Honko; Joshua C. Johnson; Sabue Mulangu; Maria Grazia Pau; Jerome Custers; Jort Vellinga; Jenny Hendriks; Peter B. Jahrling; Mario Roederer; Jaap Goudsmit; Richard A. Koup; Nancy J. Sullivan

ABSTRACT The use of adenoviruses (Ad) as vaccine vectors against a variety of pathogens has demonstrated their capacity to elicit strong antibody and cell-mediated immune responses. Adenovirus serotype C vectors, such as Ad serotype 5 (Ad5), expressing Ebolavirus (EBOV) glycoprotein (GP), protect completely after a single inoculation at a dose of 1010 viral particles. However, the clinical application of a vaccine based on Ad5 vectors may be hampered, since impairment of Ad5 vaccine efficacy has been demonstrated for humans and nonhuman primates with high levels of preexisting immunity to the vector. Ad26 and Ad35 segregate genetically from Ad5 and exhibit lower seroprevalence in humans, making them attractive vaccine vector alternatives. In the series of studies presented, we show that Ad26 and Ad35 vectors generate robust antigen-specific cell-mediated and humoral immune responses against EBOV GP and that Ad5 immune status does not affect the generation of GP-specific immune responses by these vaccines. We demonstrate partial protection against EBOV by a single-shot Ad26 vaccine and complete protection when this vaccine is boosted by Ad35 1 month later. Increases in efficacy are paralleled by substantial increases in T- and B-cell responses to EBOV GP. These results suggest that Ad26 and Ad35 vectors warrant further development as candidate vaccines for EBOV.


Infection and Immunity | 2007

Priming with an Adenovirus 35-Circumsporozoite Protein (CS) Vaccine followed by RTS,S/AS01B Boosting Significantly Improves Immunogenicity to Plasmodium falciparum CS Compared to That with Either Malaria Vaccine Alone

V. Ann Stewart; Shannon McGrath; Patrice M. Dubois; Maria G. Pau; Pascal Mettens; Joseph Shott; Michelle Cobb; J. Robert Burge; David Larson; Lisa A. Ware; Marie-Ange Demoitié; Gerrit Jan Weverling; Babak Bayat; Jerome Custers; Marie-Claude Dubois; Joe Cohen; Jaap Goudsmit; D. Gray Heppner

ABSTRACT The RTS,S/AS02A protein-based vaccine consistently demonstrates significant protection against infection with Plasmodium falciparum malaria and also against clinical malaria and severe disease in children in areas of endemicity. Here we demonstrate with rhesus macaques that priming with a replication-defective human adenovirus serotype 35 (Ad35) vector encoding circumsporozoite protein (CS) (Ad35.CS), followed by boosting with RTS,S in an improved MPL- and QS21-based adjuvant formulation, AS01B, maintains antibody responses and dramatically increases levels of T cells producing gamma interferon and other Th1 cytokines in response to CS peptides. The increased T-cell responses induced by the combination of Ad35.CS and RTS,S/AS01B are sustained for at least 6 months postvaccination and may translate to improved and more durable protection against P. falciparum infection in humans.


Human Gene Therapy | 2014

Adenovirus-based vaccines for fighting infectious diseases and cancer: progress in the field.

Dragomira Majhen; Hugo Calderon; Naresh Chandra; Carlos Alberto Fajardo; Anandi Rajan; Ramon Alemany; Jerome Custers

The field of adenovirology is undergoing rapid change in response to increasing appreciation of the potential advantages of adenoviruses as the basis for new vaccines and as vectors for gene and cancer therapy. Substantial knowledge and understanding of adenoviruses at a molecular level has made their manipulation for use as vaccines and therapeutics relatively straightforward in comparison with other viral vectors. In this review we summarize the structure and life cycle of the adenovirus and focus on the use of adenovirus-based vectors in vaccines against infectious diseases and cancers. Strategies to overcome the problem of preexisting antiadenovirus immunity, which can hamper the immunogenicity of adenovirus-based vaccines, are discussed. When armed with tumor-associated antigens, replication-deficient and oncolytic adenoviruses can efficiently activate an antitumor immune response. We present concepts on how to use adenoviruses as therapeutic cancer vaccines and consider some of the strategies used to further improve antitumor immune responses. Studies that explore the prospect of adenoviruses as vaccines against infectious diseases and cancer are underway, and here we give an overview of the latest developments.


Journal of Virology | 2010

Vector Choice Determines Immunogenicity and Potency of Genetic Vaccines against Angola Marburg Virus in Nonhuman Primates

Thomas W. Geisbert; Michael Bailey; Joan B. Geisbert; Clement Asiedu; Mario Roederer; Maria Grazia-Pau; Jerome Custers; Peter B. Jahrling; Jaap Goudsmit; Richard A. Koup; Nancy J. Sullivan

ABSTRACT The immunogenicity and durability of genetic vaccines are influenced by the composition of gene inserts and choice of delivery vector. DNA vectors are a promising vaccine approach showing efficacy when combined in prime-boost regimens with recombinant protein or viral vectors, but they have shown limited comparative efficacy as a stand-alone platform in primates, due possibly to suboptimal gene expression or cell targeting. Here, regimens using DNA plasmids modified for optimal antigen expression and recombinant adenovirus (rAd) vectors, all encoding the glycoprotein (GP) gene from Angola Marburg virus (MARV), were compared for their ability to provide immune protection against lethal MARV Angola infection. Heterologous DNA-GP/rAd5-GP prime-boost and single-modality rAd5-GP, as well as the DNA-GP-only vaccine, prevented death in all vaccinated subjects after challenge with a lethal dose of MARV Angola. The DNA/DNA vaccine induced humoral responses comparable to those induced by a single inoculation with rAd5-GP, as well as CD4+ and CD8+ cellular immune responses, with skewing toward CD4+ T-cell activity against MARV GP. Vaccine regimens containing rAd-GP, alone or as a boost, exhibited cellular responses with CD8+ T-cell dominance. Across vaccine groups, CD8+ T-cell subset dominance comprising cells exhibiting a tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ) double-positive functional phenotype was associated with an absence or low frequency of clinical symptoms, suggesting that both the magnitude and functional phenotype of CD8+ T cells may determine vaccine efficacy against infection by MARV Angola.


Vaccine | 2008

Adenovirus 5 and 35 vectors expressing Plasmodium falciparum circumsporozoite surface protein elicit potent antigen-specific cellular IFN-γ and antibody responses in mice☆

Joseph Shott; Shannon McGrath; Maria Grazia Pau; Jerome Custers; Olga Ophorst; Marie-Ange Demoitié; Marie-Claude Dubois; Jack Komisar; Michelle Cobb; Kent E. Kester; Patrice M. Dubois; Joe Cohen; Jaap Goudsmit; D. Gray Heppner; V. Ann Stewart

Falciparum malaria vaccine candidates have been developed using recombinant, replication-deficient serotype 5 and 35 adenoviruses (Ad5, Ad35) encoding the Plasmodium falciparum circumsporozoite surface protein (CSP) (Ad5.CS, Ad35.CS) (Crucell Holland BV, Leiden, The Netherlands). To evaluate the immunogenicity of these constructs, BALB/cJ mice were immunized twice with either Ad5.CS, Ad35.CS, empty Ad5-vector (eAd5), empty Ad35 vector (eAd35), or saline. Another group received the CSP-based RTS,S malaria vaccine formulated in the proprietary Adjuvant System AS01B (GlaxoSmithKline Biologicals, Rixensart, Belgium). Here we report that Ad5.CS, Ad35.CS, and RTS,S/AS01B, elicited both cellular and serologic CSP antigen-specific responses in mice. These adenoviral vectors induce strong malaria-specific immunity and warrant further evaluation.

Collaboration


Dive into the Jerome Custers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jort Vellinga

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan H. Barouch

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge