Jérôme Gouttenoire
University of Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jérôme Gouttenoire.
PLOS Pathogens | 2010
Vlastimil Jirasko; Roland Montserret; Ji-Young Lee; Jérôme Gouttenoire; Darius Moradpour; François Penin; Ralf Bartenschlager
Non-structural protein 2 (NS2) plays an important role in hepatitis C virus (HCV) assembly, but neither the exact contribution of this protein to the assembly process nor its complete structure are known. In this study we used a combination of genetic, biochemical and structural methods to decipher the role of NS2 in infectious virus particle formation. A large panel of NS2 mutations targeting the N-terminal membrane binding region was generated. They were selected based on a membrane topology model that we established by determining the NMR structures of N-terminal NS2 transmembrane segments. Mutants affected in virion assembly, but not RNA replication, were selected for pseudoreversion in cell culture. Rescue mutations restoring virus assembly to various degrees emerged in E2, p7, NS3 and NS2 itself arguing for an interaction between these proteins. To confirm this assumption we developed a fully functional JFH1 genome expressing an N-terminally tagged NS2 demonstrating efficient pull-down of NS2 with p7, E2 and NS3 and, to a lower extent, NS5A. Several of the mutations blocking virus assembly disrupted some of these interactions that were restored to various degrees by those pseudoreversions that also restored assembly. Immunofluorescence analyses revealed a time-dependent NS2 colocalization with E2 at sites close to lipid droplets (LDs) together with NS3 and NS5A. Importantly, NS2 of a mutant defective in assembly abrogates NS2 colocalization around LDs with E2 and NS3, which is restored by a pseudoreversion in p7, whereas NS5A is recruited to LDs in an NS2-independent manner. In conclusion, our results suggest that NS2 orchestrates HCV particle formation by participation in multiple protein-protein interactions required for their recruitment to assembly sites in close proximity of LDs.
Hepatology | 2009
Pantxika Bellecave; Jérôme Gouttenoire; Markus Gajer; Volker Brass; George Koutsoudakis; Hubert E. Blum; Ralf Bartenschlager; Michael Nassal; Darius Moradpour
Coinfection with hepatitis B virus (HBV) and hepatitis C virus (HCV) has been associated with severe liver disease and frequent progression to cirrhosis and hepatocellular carcinoma. Clinical evidence suggests reciprocal replicative suppression of the two viruses, or viral interference. However, interactions between HBV and HCV have been difficult to study due to the lack of appropriate model systems. We have established a novel model system to investigate interactions between HBV and HCV. Stable Huh‐7 cell lines inducibly replicating HBV were transfected with selectable HCV replicons or infected with cell culture–derived HCV. In this system, both viruses were found to replicate in the same cell without overt interference. Specific inhibition of one virus did not affect the replication and gene expression of the other. Furthermore, cells harboring replicating HBV could be infected with cell culture–derived HCV, arguing against superinfection exclusion. Finally, cells harboring replicating HBV supported efficient production of infectious HCV. Conclusion: HBV and HCV can replicate in the same cell without evidence for direct interference in vitro. Therefore, the viral interference observed in coinfected patients is probably due to indirect mechanisms mediated by innate and/or adaptive host immune responses. These findings provide new insights into the pathogenesis of HBV–HCV coinfection and may contribute to its clinical management in the future. (HEPATOLOGY 2009.)
Reviews in Medical Virology | 2010
Jérôme Gouttenoire; François Penin; Darius Moradpour
Hepatitis C virus (HCV) is a positive‐strand RNA virus that replicates its genome in a membrane‐associated replication complex. Nonstructural protein 4B (NS4B) induces the specific membrane alteration, designated as membranous web (MW), that harbours this complex. HCV NS4B is an integral membrane protein predicted to comprise four transmembrane segments in its central part. The N‐terminal part comprises two amphipathic α‐helices of which the second has the potential to traverse the membrane bilayer, likely upon oligomerisation. The C‐terminal part comprises a predicted highly conserved α‐helix, a membrane‐associated amphipathic α‐helix and two reported palmitoylation sites. NS4B interacts with other viral nonstructural proteins and has been reported to bind viral RNA. In addition, it was found to harbour an NTPase activity. Finally, NS4B has recently been found to have a role in viral assembly. Much work needs to be done with respect to further dissecting these multiple functions as well as providing a refined membrane topology and complete structure of NS4B. Progress in this direction should yield important insights into the functional architecture of the HCV replication complex and may reveal new opportunities for antiviral intervention against a leading cause of chronic hepatitis, liver cirrhosis and hepatocellular carcinoma worldwide. Copyright
Journal of Viral Hepatitis | 2011
Kenichi Morikawa; Christian Lange; Jérôme Gouttenoire; Etienne Meylan; Volker Brass; François Penin; Darius Moradpour
Summary. Hepatitis C virus (HCV) nonstructural protein 3‐4A (NS3‐4A) is a complex composed of NS3 and its cofactor NS4A. It harbours serine protease as well as NTPase/RNA helicase activities and is essential for viral polyprotein processing, RNA replication and virion formation. Specific inhibitors of the NS3‐4A protease significantly improve sustained virological response rates in patients with chronic hepatitis C when combined with pegylated interferon‐α and ribavirin. The NS3‐4A protease can also target selected cellular proteins, thereby blocking innate immune pathways and modulating growth factor signalling. Hence, NS3‐4A is not only an essential component of the viral replication complex and prime target for antiviral intervention but also a key player in the persistence and pathogenesis of HCV. This review provides a concise update on the biochemical and structural aspects of NS3‐4A, its role in the pathogenesis of chronic hepatitis C and the clinical development of NS3‐4A protease inhibitors.
Journal of Virology | 2011
David L. Paul; Inés Romero-Brey; Jérôme Gouttenoire; Savina Stoitsova; Jacomine Krijnse-Locker; Darius Moradpour; Ralf Bartenschlager
ABSTRACT Hepatitis C virus (HCV) is an important human pathogen, persistently infecting more than 170 million individuals worldwide. Studies of the HCV life cycle have become possible with the development of cell culture systems supporting the replication of viral RNA and the production of infectious virus. However, the exact functions of individual proteins, especially of nonstructural protein 4B (NS4B), remain poorly understood. NS4B triggers the formation of specific, vesicular membrane rearrangements, referred to as membranous webs, which have been reported to represent sites of HCV RNA replication. However, the mechanism of vesicle induction is not known. In this study, a panel of 15 mutants carrying substitutions in the highly conserved NS4B C-terminal domain was generated. Five mutations had only a minor effect on replication, but two of them enhanced assembly and release of infectious virus. Ten mutants were replication defective and used for selection of pseudoreversions. Most of the pseudoreversions also localized to the highly conserved NS4B C-terminal domain and were found to restore replication competence upon insertion into the corresponding primary mutant. Importantly, pseudoreversions restoring replication competence also restored heterotypic NS4B self-interaction, which was disrupted by the primary mutation. Finally, electron microscopy analyses of membrane alterations induced by NS4B mutants revealed striking morphological abnormalities, which were restored to wild-type morphology by the corresponding pseudoreversion. These findings demonstrate the important role of the C-terminal domain in NS4B self-interaction and the formation of functional HCV replication complexes.
Hepatology | 2010
Pantxika Bellecave; Magdalena Sarasin-Filipowicz; Olivier Donzé; Audrey Kennel; Jérôme Gouttenoire; Etienne Meylan; Luigi Terracciano; Jürg Tschopp; Christoph Sarrazin; Thomas Berg; Darius Moradpour; Markus H. Heim
Hepatitis C virus (HCV) infection induces the endogenous interferon (IFN) system in the liver in some but not all patients with chronic hepatitis C (CHC). Patients with a pre‐activated IFN system are less likely to respond to the current standard therapy with pegylated IFN‐α. Mitochondrial antiviral signaling protein (MAVS) is an important adaptor molecule in a signal transduction pathway that senses viral infections and transcriptionally activates IFN‐β. The HCV NS3‐4A protease can cleave and thereby inactivate MAVS in vitro, and, therefore, might be crucial in determining the activation status of the IFN system in the liver of infected patients. We analyzed liver biopsies from 129 patients with CHC to investigate whether MAVS is cleaved in vivo and whether cleavage prevents the induction of the endogenous IFN system. Cleavage of MAVS was detected in 62 of the 129 samples (48%) and was more extensive in patients with a high HCV viral load. MAVS was cleaved by all HCV genotypes (GTs), but more efficiently by GTs 2 and 3 than by GTs 1 and 4. The IFN‐induced Janus kinase (Jak)‐signal transducer and activator of transcription protein (STAT) pathway was less frequently activated in patients with cleaved MAVS, and there was a significant inverse correlation between cleavage of MAVS and the expression level of the IFN‐stimulated genes IFI44L, Viperin, IFI27, USP18, and STAT1. We conclude that the pre‐activation status of the endogenous IFN system in the liver of patients with CHC is in part regulated by cleavage of MAVS. (HEPATOLOGY 2010.)
Journal of Virology | 2010
Maria Ripoli; Annamaria D'Aprile; Giovanni Quarato; Magdalena Sarasin-Filipowicz; Jérôme Gouttenoire; Rosella Scrima; Olga Cela; Domenico Boffoli; Markus H. Heim; Darius Moradpour; Nazzareno Capitanio; Claudia Piccoli
ABSTRACT Hepatitis C virus (HCV) infection induces a state of oxidative stress by affecting mitochondrial-respiratory-chain activity. By using cell lines inducibly expressing different HCV constructs, we showed previously that viral-protein expression leads to severe impairment of mitochondrial oxidative phosphorylation and to major reliance on nonoxidative glucose metabolism. However, the bioenergetic competence of the induced cells was not compromised, indicating an efficient prosurvival adaptive response. Here, we show that HCV protein expression activates hypoxia-inducible factor 1 (HIF-1) by normoxic stabilization of its α subunit. In consequence, expression of HIF-controlled genes, including those coding for glycolytic enzymes, was significantly upregulated. Similar expression of HIF-controlled genes was observed in cell lines inducibly expressing subgenomic HCV constructs encoding either structural or nonstructural viral proteins. Stabilization and transcriptional activation of HIF-1α was confirmed in Huh-7.5 cells harboring cell culture-derived infectious HCV and in liver biopsy specimens from patients with chronic hepatitis C. The HCV-related HIF-1α stabilization was insensitive to antioxidant treatment. Mimicking an impairment of mitochondrial oxidative phosphorylation by treatment of inducible cell lines with oligomycin resulted in stabilization of HIF-1α. Similar results were obtained by treatment with pyruvate, indicating that accumulation of intermediate metabolites is sufficient to stabilize HIF-1α. These observations provide new insights into the pathogenesis of chronic hepatitis C and, possibly, the HCV-related development of hepatocellular carcinoma.
Journal of Virology | 2009
Jérôme Gouttenoire; Valérie Castet; Roland Montserret; Naveen Arora; Vincent Raussens; Jean Marie Ruysschaert; Eric Diesis; Hubert E. Blum; François Penin; Darius Moradpour
ABSTRACT Nonstructural protein 4B (NS4B) plays an essential role in the formation of the hepatitis C virus (HCV) replication complex. It is a relatively poorly characterized integral membrane protein predicted to comprise four transmembrane segments in its central portion. Here, we describe a novel determinant for membrane association represented by amino acids (aa) 40 to 69 in the N-terminal portion of NS4B. This segment was sufficient to target and tightly anchor the green fluorescent protein to cellular membranes, as assessed by fluorescence microscopy as well as membrane extraction and flotation analyses. Circular dichroism and nuclear magnetic resonance structural analyses showed that this segment comprises an amphipathic α-helix extending from aa 42 to 66. Attenuated total reflection infrared spectroscopy and glycosylation acceptor site tagging revealed that this amphipathic α-helix has the potential to traverse the phospholipid bilayer as a transmembrane segment, likely upon oligomerization. Alanine substitution of the fully conserved aromatic residues on the hydrophobic helix side abrogated membrane association of the segment comprising aa 40 to 69 and disrupted the formation of a functional replication complex. These results provide the first atomic resolution structure of an essential membrane-associated determinant of HCV NS4B.
Journal of Virology | 2010
Jérôme Gouttenoire; Philippe Roingeard; François Penin; Darius Moradpour
ABSTRACT Nonstructural protein 4B (NS4B) is a key organizer of hepatitis C virus (HCV) replication complex formation. It induces a specific membrane rearrangement, designated membranous web, that serves as a scaffold for the HCV replication complex. However, the mechanisms underlying membranous web formation are poorly understood. Based on fluorescence resonance energy transfer (FRET) and confirmatory coimmunoprecipitation analyses, we provide evidence for an oligomerization of NS4B in the membrane environment of intact cells. Several conserved determinants were found to be involved in NS4B oligomerization, through homotypic and heterotypic interactions. N-terminal amphipathic α-helix AH2, comprising amino acids 42 to 66, was identified as a major determinant for NS4B oligomerization. Mutations that affected the oligomerization of NS4B disrupted membranous web formation and HCV RNA replication, implying that oligomerization of NS4B is required for the creation of a functional replication complex. These findings enhance our understanding of the functional architecture of the HCV replication complex and may provide new angles for therapeutic intervention. At the same time, they expand the list of positive-strand RNA virus replicase components acting as oligomers.
Journal of Hepatology | 2016
Yannick Debing; Darius Moradpour; Johan Neyts; Jérôme Gouttenoire
Hepatitis E virus (HEV) is a positive-strand RNA virus transmitted by the fecal-oral route. The 7.2kb genome encodes three open reading frames (ORF) which are translated into (i) the ORF1 polyprotein, representing the viral replicase, (ii) the ORF2 protein, corresponding to the viral capsid, and (iii) the ORF3 protein, a small protein involved in particle secretion. Although HEV is a non-enveloped virus in bile and feces, it circulates in the bloodstream wrapped in cellular membranes. HEV genotypes 1 and 2 infect only humans and cause mainly waterborne outbreaks. HEV genotypes 3 and 4 are widely represented in the animal kingdom and are transmitted as a zoonosis mainly via contaminated meat. HEV infection is usually self-limited but may persist and cause chronic hepatitis in immunocompromised patients. Reduction of immunosuppressive treatment or antiviral therapy with ribavirin have proven effective in most patients with chronic hepatitis E but therapy failures have been reported. Alternative treatment options are needed, therefore. Infection with HEV may also cause a number of extrahepatic manifestations, especially neurologic complications. Progress in the understanding of the biology of HEV should contribute to improved control and treatment of HEV infection.