Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jérôme Grimplet is active.

Publication


Featured researches published by Jérôme Grimplet.


BMC Genomics | 2007

Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development

Laurent G. Deluc; Jérôme Grimplet; Matthew D. Wheatley; Richard L. Tillett; David R. Quilici; Craig Osborne; David A. Schooley; Karen Schlauch; John C. Cushman; Grant R. Cramer

BackgroundGrape berry development is a dynamic process that involves a complex series of molecular genetic and biochemical changes divided into three major phases. During initial berry growth (Phase I), berry size increases along a sigmoidal growth curve due to cell division and subsequent cell expansion, and organic acids (mainly malate and tartrate), tannins, and hydroxycinnamates accumulate to peak levels. The second major phase (Phase II) is defined as a lag phase in which cell expansion ceases and sugars begin to accumulate. Véraison (the onset of ripening) marks the beginning of the third major phase (Phase III) in which berries undergo a second period of sigmoidal growth due to additional mesocarp cell expansion, accumulation of anthocyanin pigments for berry color, accumulation of volatile compounds for aroma, softening, peak accumulation of sugars (mainly glucose and fructose), and a decline in organic acid accumulation. In order to understand the transcriptional network responsible for controlling berry development, mRNA expression profiling was conducted on berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip®Vitis oligonucleotide microarray ver. 1.0 spanning seven stages of berry development from small pea size berries (E-L stages 31 to 33 as defined by the modified E-L system), through véraison (E-L stages 34 and 35), to mature berries (E-L stages 36 and 38). Selected metabolites were profiled in parallel with mRNA expression profiling to understand the effect of transcriptional regulatory processes on specific metabolite production that ultimately influence the organoleptic properties of wine.ResultsOver the course of berry development whole fruit tissues were found to express an average of 74.5% of probes represented on the Vitis microarray, which has 14,470 Unigenes. Approximately 60% of the expressed transcripts were differentially expressed between at least two out of the seven stages of berry development (28% of transcripts, 4,151 Unigenes, had pronounced (≥2 fold) differences in mRNA expression) illustrating the dynamic nature of the developmental process. The subset of 4,151 Unigenes was split into twenty well-correlated expression profiles. Expression profile patterns included those with declining or increasing mRNA expression over the course of berry development as well as transient peak or trough patterns across various developmental stages as defined by the modified E-L system. These detailed surveys revealed the expression patterns for genes that play key functional roles in phytohormone biosynthesis and response, calcium sequestration, transport and signaling, cell wall metabolism mediating expansion, ripening, and softening, flavonoid metabolism and transport, organic and amino acid metabolism, hexose sugar and triose phosphate metabolism and transport, starch metabolism, photosynthesis, circadian cycles and pathogen resistance. In particular, mRNA expression patterns of transcription factors, abscisic acid (ABA) biosynthesis, and calcium signaling genes identified candidate factors likely to participate in the progression of key developmental events such as véraison and potential candidate genes associated with such processes as auxin partitioning within berry cells, aroma compound production, and pathway regulation and sequestration of flavonoid compounds. Finally, analysis of sugar metabolism gene expression patterns indicated the existence of an alternative pathway for glucose and triose phosphate production that is invoked from véraison to mature berries.ConclusionThese results reveal the first high-resolution picture of the transcriptome dynamics that occur during seven stages of grape berry development. This work also establishes an extensive catalog of gene expression patterns for future investigations aimed at the dissection of the transcriptional regulatory hierarchies that govern berry development in a widely grown cultivar of wine grape. More importantly, this analysis identified a set of previously unknown genes potentially involved in critical steps associated with fruit development that can now be subjected to functional testing.


BMC Genomics | 2009

Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay

Laurent G. Deluc; David R. Quilici; Alain Decendit; Jérôme Grimplet; Matthew D. Wheatley; Karen Schlauch; Jean-Michel Mérillon; John C. Cushman; Grant R. Cramer

BackgroundWater deficit has significant effects on grape berry composition resulting in improved wine quality by the enhancement of color, flavors, or aromas. While some pathways or enzymes affected by water deficit have been identified, little is known about the global effects of water deficit on grape berry metabolism.ResultsThe effects of long-term, seasonal water deficit on berries of Cabernet Sauvignon, a red-wine grape, and Chardonnay, a white-wine grape were analyzed by integrated transcript and metabolite profiling. Over the course of berry development, the steady-state transcript abundance of approximately 6,000 Unigenes differed significantly between the cultivars and the irrigation treatments. Water deficit most affected the phenylpropanoid, ABA, isoprenoid, carotenoid, amino acid and fatty acid metabolic pathways. Targeted metabolites were profiled to confirm putative changes in specific metabolic pathways. Water deficit activated the expression of numerous transcripts associated with glutamate and proline biosynthesis and some committed steps of the phenylpropanoid pathway that increased anthocyanin concentrations in Cabernet Sauvignon. In Chardonnay, water deficit activated parts of the phenylpropanoid, energy, carotenoid and isoprenoid metabolic pathways that contribute to increased concentrations of antheraxanthin, flavonols and aroma volatiles. Water deficit affected the ABA metabolic pathway in both cultivars. Berry ABA concentrations were highly correlated with 9-cis-epoxycarotenoid dioxygenase (NCED1) transcript abundance, whereas the mRNA expression of other NCED genes and ABA catabolic and glycosylation processes were largely unaffected. Water deficit nearly doubled ABA concentrations within berries of Cabernet Sauvignon, whereas it decreased ABA in Chardonnay at véraison and shortly thereafter.ConclusionThe metabolic responses of grapes to water deficit varied with the cultivar and fruit pigmentation. Chardonnay berries, which lack any significant anthocyanin content, exhibited increased photoprotection mechanisms under water deficit conditions. Water deficit increased ABA, proline, sugar and anthocyanin concentrations in Cabernet Sauvignon, but not Chardonnay berries, consistent with the hypothesis that ABA enhanced accumulation of these compounds. Water deficit increased the transcript abundance of lipoxygenase and hydroperoxide lyase in fatty metabolism, a pathway known to affect berry and wine aromas. These changes in metabolism have important impacts on berry flavor and quality characteristics. Several of these metabolites are known to contribute to increased human-health benefits.


BMC Genomics | 2007

Tissue-specific mRNA expression profiling in grape berry tissues

Jérôme Grimplet; Laurent G. Deluc; Richard L. Tillett; Matthew D. Wheatley; Karen Schlauch; Grant R. Cramer; John C. Cushman

BackgroundBerries of grape (Vitis vinifera) contain three major tissue types (skin, pulp and seed) all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin) and mesocarp (pulp), not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip®Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions.ResultsOverall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater) differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell wall function and transport processes. Seeds, which supply essential resources for embryo development, showed higher mRNA abundance of genes encoding phenylpropanoid biosynthetic enzymes, seed storage proteins, and late embryogenesis abundant proteins. Water-deficit stress affected the mRNA abundance of 13% of the genes with differential expression patterns occurring mainly in the pulp and skin. In pulp and seed tissues transcript abundance in most functional categories declined in water-deficit stressed vines relative to well-watered vines with transcripts for storage proteins and novel (no-hit) functional assignments being over represented. In the skin of berries from water-deficit stressed vines, however, transcripts from several functional categories including general phenypropanoid and ethylene metabolism, pathogenesis-related responses, energy, and interaction with the environment were significantly over-represented.ConclusionThese results revealed novel insights into the tissue-specific expression mRNA expression patterns of an extensive repertoire of genes expressed in berry tissues. This work also establishes an extensive catalogue of gene expression patterns for future investigations aimed at the dissection of the transcriptional regulatory hierarchies that govern tissue-specific expression patterns associated with tissue differentiation within berries. These results also confirmed that water-deficit stress has a profound effect on mRNA expression patterns particularly associated with the biosynthesis of aroma and color metabolites within skin and pulp tissues that ultimately impact wine quality.


Proteomics | 2009

Proteomic and selected metabolite analysis of grape berry tissues under well‐watered and water‐deficit stress conditions

Jérôme Grimplet; Matthew D. Wheatley; Hatem Ben Jouira; Laurent G. Deluc; Grant R. Cramer; John C. Cushman

In order to investigate the unique contribution of individual wine grape (Vitis vinifera) berry tissues and water‐deficit to wine quality traits, a survey of tissue‐specific differences in protein and selected metabolites was conducted using pericarp (skin and pulp) and seeds of berries from vines grown under well‐watered and water‐deficit stress conditions. Of 1047 proteins surveyed from pericarp by 2‐D PAGE, 90 identified proteins showed differential expression between the skin and pulp. Of 695 proteins surveyed from seed tissue, 163 were identified and revealed that the seed and pericarp proteomes were nearly completely distinct from one another. Water‐deficit stress altered the abundance of approximately 7% of pericarp proteins, but had little effect on seed protein expression. Comparison of protein and available mRNA expression patterns showed that 32% pericarp and 69% seed proteins exhibited similar quantitative expression patterns indicating that protein accumulation patterns are strongly influenced by post‐transcriptional processes. About half of the 32 metabolites surveyed showed tissue‐specific differences in abundance with water‐deficit stress affecting the accumulation of seven of these compounds. These results provide novel insights into the likely tissue‐specific origins and the influence of water‐deficit stress on the accumulation of key flavor and aroma compounds in wine.


BMC Research Notes | 2012

Comparative analysis of grapevine whole-genome gene predictions, functional annotation, categorization and integration of the predicted gene sequences

Jérôme Grimplet; John L. Van Hemert; Pablo Carbonell-Bejerano; José Díaz-Riquelme; Julie A. Dickerson; Anne Fennell; Mario Pezzotti; José M. Martínez-Zapater

BackgroundThe first draft assembly and gene prediction of the grapevine genome (8X base coverage) was made available to the scientific community in 2007, and functional annotation was developed on this gene prediction. Since then additional Sanger sequences were added to the 8X sequences pool and a new version of the genomic sequence with superior base coverage (12X) was produced.ResultsIn order to more efficiently annotate the function of the genes predicted in the new assembly, it is important to build on as much of the previous work as possible, by transferring 8X annotation of the genome to the 12X version. The 8X and 12X assemblies and gene predictions of the grapevine genome were compared to answer the question, “Can we uniquely map 8X predicted genes to 12X predicted genes?” The results show that while the assemblies and gene structure predictions are too different to make a complete mapping between them, most genes (18,725) showed a one-to-one relationship between 8X predicted genes and the last version of 12X predicted genes. In addition, reshuffled genomic sequence structures appeared. These highlight regions of the genome where the gene predictions need to be taken with caution. Based on the new grapevine gene functional annotation and in-depth functional categorization, twenty eight new molecular networks have been created for VitisNet while the existing networks were updated.ConclusionsThe outcomes of this study provide a functional annotation of the 12X genes, an update of VitisNet, the system of the grapevine molecular networks, and a new functional categorization of genes. Data are available at the VitisNet website (http://www.sdstate.edu/ps/research/vitis/pathways.cfm).


PLOS ONE | 2009

VitisNet: “Omics” Integration through Grapevine Molecular Networks

Jérôme Grimplet; Grant R. Cramer; Julie A. Dickerson; Kathy Mathiason; John L. Van Hemert; Anne Fennell

Background Genomic data release for the grapevine has increased exponentially in the last five years. The Vitis vinifera genome has been sequenced and Vitis EST, transcriptomic, proteomic, and metabolomic tools and data sets continue to be developed. The next critical challenge is to provide biological meaning to this tremendous amount of data by annotating genes and integrating them within their biological context. We have developed and validated a system of Grapevine Molecular Networks (VitisNet). Methodology/Principal Findings The sequences from the Vitis vinifera (cv. Pinot Noir PN40024) genome sequencing project and ESTs from the Vitis genus have been paired and the 39,424 resulting unique sequences have been manually annotated. Among these, 13,145 genes have been assigned to 219 networks. The pathway sets include 88 “Metabolic”, 15 “Genetic Information Processing”, 12 “Environmental Information Processing”, 3 “Cellular Processes”, 21 “Transport”, and 80 “Transcription Factors”. The quantitative data is loaded onto molecular networks, allowing the simultaneous visualization of changes in the transcriptome, proteome, and metabolome for a given experiment. Conclusions/Significance VitisNet uses manually annotated networks in SBML or XML format, enabling the integration of large datasets, streamlining biological functional processing, and improving the understanding of dynamic processes in systems biology experiments. VitisNet is grounded in the Vitis vinifera genome (currently at 8x coverage) and can be readily updated with subsequent updates of the genome or biochemical discoveries. The molecular network files can be dynamically searched by pathway name or individual genes, proteins, or metabolites through the MetNet Pathway database and web-portal at http://metnet3.vrac.iastate.edu/. All VitisNet files including the manual annotation of the grape genome encompassing pathway names, individual genes, their genome identifier, and chromosome location can be accessed and downloaded from the VitisNet tab at http://vitis-dormancy.sdstate.org.


Plant Molecular Biology | 2007

Identification of genes associated with flesh morphogenesis during grapevine fruit development

Lucie Fernandez; Laurent Torregrosa; Nancy Terrier; Lekha Sreekantan; Jérôme Grimplet; Christopher Davies; Mark R. Thomas; Charles Romieu; Agnès Ageorges

Fruit morphogenesis is a process unique to the angiosperms, and yet little is known about its developmental control. Following fertilization, fruits typically undergo a dramatic enlargement that is accompanied by differentiation of numerous distinct cell types. To identify genes putatively involved in the early development of grapevine fruit, we used the fleshless berry mutant (Vitis vinifera L. cv Ugni Blanc) that has dramatically reduced fruit size due to a lack of pericarp development. Using oligo-specific arrays, 53 and 50 genes were identified as being down- and up-regulated, respectively, in the mutant. In parallel, Suppression Subtractive Hybridization performed between the mutant and the wild type (WT) allowed the identification of new transcripts differentially expressed during the first stages of mutant and WT pericarp development. From this data, the picture emerged that the mutation promotes the expression of several genes related to ripening and/or to stress and impairs the expression of several regulatory genes. Among those, five genes encoding proteins previously reported to be associated with, or involved in, developmental processes in other species (a specific tissue protein 2, ATHB13, a BURP domain protein, PISTILLATA, and YABBY2), were identified and investigated further using real-time PCR and in situ hybridization. Expression in the pericarp was confirmed, specific spatial and/or temporal patterns were detected and differences were observed between the WT and the mutant during fruit development. Expression of these genes appeared to be affected during young fruit development in the mutant, suggesting that they may play a role in grape berry morphogenesis.


PLOS ONE | 2012

Berry Flesh and Skin Ripening Features in Vitis vinifera as Assessed by Transcriptional Profiling

Diego Lijavetzky; Pablo Carbonell-Bejerano; Jérôme Grimplet; Gema Bravo; Pilar Flores; José Fenoll; Pilar Hellín; Juan Carlos Oliveros; José M. Martínez-Zapater

Background Ripening of fleshy fruit is a complex developmental process involving the differentiation of tissues with separate functions. During grapevine berry ripening important processes contributing to table and wine grape quality take place, some of them flesh- or skin-specific. In this study, transcriptional profiles throughout flesh and skin ripening were followed during two different seasons in a table grape cultivar ‘Muscat Hamburg’ to determine tissue-specific as well as common developmental programs. Methodology/Principal Findings Using an updated GrapeGen Affymetrix GeneChip® annotation based on grapevine 12×v1 gene predictions, 2188 differentially accumulated transcripts between flesh and skin and 2839 transcripts differentially accumulated throughout ripening in the same manner in both tissues were identified. Transcriptional profiles were dominated by changes at the beginning of veraison which affect both pericarp tissues, although frequently delayed or with lower intensity in the skin than in the flesh. Functional enrichment analysis identified the decay on biosynthetic processes, photosynthesis and transport as a major part of the program delayed in the skin. In addition, a higher number of functional categories, including several related to macromolecule transport and phenylpropanoid and lipid biosynthesis, were over-represented in transcripts accumulated to higher levels in the skin. Functional enrichment also indicated auxin, gibberellins and bHLH transcription factors to take part in the regulation of pre-veraison processes in the pericarp, whereas WRKY and C2H2 family transcription factors seems to more specifically participate in the regulation of skin and flesh ripening, respectively. Conclusions/Significance A transcriptomic analysis indicates that a large part of the ripening program is shared by both pericarp tissues despite some components are delayed in the skin. In addition, important tissue differences are present from early stages prior to the ripening onset including tissue-specific regulators. Altogether, these findings provide key elements to understand berry ripening and its differential regulation in flesh and skin.


BMC Plant Biology | 2012

Transcriptome variation along bud development in grapevine ( Vitis vinifera L.)

José Díaz-Riquelme; Jérôme Grimplet; José M. Martínez-Zapater; María José Carmona

BackgroundVegetative buds provide plants in temperate environments the possibility for growth and reproduction when environmental conditions are favorable. In grapevine, crucial developmental events take place within buds during two growing seasons in consecutive years. The first season, the shoot apical meristem within the bud differentiates all the basic elements of the shoot including flowering transition in lateral primordia and development of inflorescence primordia. These events practically end with bud dormancy. The second season, buds resume shoot growth associated to flower formation and development. Gene expression has been previously monitored at specific stages of bud development but has never been followed along the two growing seasons.ResultsGene expression changes were analyzed along the bud annual cycle at eight different time points. Principal Components Analysis (PCA) revealed that the main factors explaining the global gene expression differences were the processes of bud dormancy and active growth as well as stress responses. Accordingly, non dormant buds showed an enrichment in functional categories typical of actively proliferating and growing cells together with the over abundance of transcripts belonging to stress response pathways. Differential expression analyses performed between consecutive time points indicated that major transcriptional changes were associated to para/endodormancy, endo/ecodormancy and ecodormancy/bud break transitions. Transcripts encoding key regulators of reproductive development were grouped in three major expression clusters corresponding to: (i) transcripts associated to flowering induction, (ii) transcripts associated to flower meristem specification and initiation and (iii) transcripts putatively involved in dormancy. Within this cluster, a MADS-box gene (VvFLC2) and other transcripts with similar expression patterns could participate in dormancy regulation.ConclusionsThis work provides a global view of major transcriptional changes taking place along bud development in grapevine, highlighting those molecular and biological functions involved in the main events of bud development. As reported in other woody species, the results suggest that genes regulating flowering could also be involved in dormancy regulatory pathways in grapevine.


BMC Genomics | 2014

The grapevine gene nomenclature system

Jérôme Grimplet; A. F. Adam-Blondon; Pierre-François Bert; Olivier Bitz; Dario Cantu; Christopher Davies; Serge Delrot; Mario Pezzotti; Stephane Rombauts; Grant R. Cramer

BackgroundGrapevine (Vitis vinifera L.) is one of the most important fruit crops in the world and serves as a valuable model for fruit development in woody species. A major breakthrough in grapevine genomics was achieved in 2007 with the sequencing of the Vitis vinifera cv. PN40024 genome. Subsequently, data on structural and functional characterization of grape genes accumulated exponentially. To better exploit the results obtained by the international community, we think that a coordinated nomenclature for gene naming in species with sequenced genomes is essential. It will pave the way for the accumulation of functional data that will enable effective scientific discussion and discovery. The exploitation of data that were generated independently of the genome release is hampered by their heterogeneous nature and by often incompatible and decentralized storage. Classically, large amounts of data describing gene functions are only available in printed articles and therefore remain hardly accessible for automatic text mining. On the other hand, high throughput “Omics” data are typically stored in public repositories, but should be arranged in compendia to better contribute to the annotation and functional characterization of the genes.ResultsWith the objective of providing a high quality and highly accessible annotation of grapevine genes, the International Grapevine Genome Project (IGGP) commissioned an international Super-Nomenclature Committee for Grape Gene Annotation (sNCGGa) to coordinate the effort of experts to annotate the grapevine genes. The goal of the committee is to provide a standard nomenclature for locus identifiers and to define conventions for a gene naming system in this paper.ConclusionsLearning from similar initiatives in other plant species such as Arabidopsis, rice and tomato, a versatile nomenclature system has been developed in anticipation of future genomic developments and annotation issues. The sNCGGa’s first outreach to the grape community has been focused on implementing recommended guidelines for the expert annotators by: (i) providing a common annotation platform that enables community-based gene curation, (ii) developing a gene nomenclature scheme reflecting the biological features of gene products that is consistent with that used in other organisms in order to facilitate comparative analyses.

Collaboration


Dive into the Jérôme Grimplet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Fennell

South Dakota State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge