Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jérôme Hamelin is active.

Publication


Featured researches published by Jérôme Hamelin.


The ISME Journal | 2013

Robust estimation of microbial diversity in theory and in practice.

Bart Haegeman; Jérôme Hamelin; John Moriarty; Peter Neal; Jonathan Dushoff; Joshua S. Weitz

Quantifying diversity is of central importance for the study of structure, function and evolution of microbial communities. The estimation of microbial diversity has received renewed attention with the advent of large-scale metagenomic studies. Here, we consider what the diversity observed in a sample tells us about the diversity of the community being sampled. First, we argue that one cannot reliably estimate the absolute and relative number of microbial species present in a community without making unsupported assumptions about species abundance distributions. The reason for this is that sample data do not contain information about the number of rare species in the tail of species abundance distributions. We illustrate the difficulty in comparing species richness estimates by applying Chao’s estimator of species richness to a set of in silico communities: they are ranked incorrectly in the presence of large numbers of rare species. Next, we extend our analysis to a general family of diversity metrics (‘Hill diversities’), and construct lower and upper estimates of diversity values consistent with the sample data. The theory generalizes Chao’s estimator, which we retrieve as the lower estimate of species richness. We show that Shannon and Simpson diversity can be robustly estimated for the in silico communities. We analyze nine metagenomic data sets from a wide range of environments, and show that our findings are relevant for empirically-sampled communities. Hence, we recommend the use of Shannon and Simpson diversity rather than species richness in efforts to quantify and compare microbial diversity.


Applied and Environmental Microbiology | 2007

Differences between Bacterial Communities in the Gut of a Soil-Feeding Termite (Cubitermes niokoloensis) and Its Mounds

Saliou Fall; Jérôme Hamelin; Farma Ndiaye; Komi Assigbetse; Michel Aragno; Jean Luc Chotte; Alain Brauman

ABSTRACT In tropical ecosystems, termite mound soils constitute an important soil compartment covering around 10% of African soils. Previous studies have shown (S. Fall, S. Nazaret, J. L. Chotte, and A. Brauman, Microb. Ecol. 28:191-199, 2004) that the bacterial genetic structure of the mounds of soil-feeding termites (Cubitermes niokoloensis) is different from that of their surrounding soil. The aim of this study was to characterize the specificity of bacterial communities within mounds with respect to the digestive and soil origins of the mound. We have compared the bacterial community structures of a termite mound, termite gut sections, and surrounding soil using PCR-denaturing gradient gel electrophoresis (DGGE) analysis and cloning and sequencing of PCR-amplified 16S rRNA gene fragments. DGGE analysis revealed a drastic difference between the genetic structures of the bacterial communities of the termite gut and the mound. Analysis of 266 clones, including 54 from excised bands, revealed a high level of diversity in each biota investigated. The soil-feeding termite mound was dominated by the Actinobacteria phylum, whereas the Firmicutes and Proteobacteria phyla dominate the gut sections of termites and the surrounding soil, respectively. Phylogenetic analyses revealed a distinct clustering of Actinobacteria phylotypes between the mound and the surrounding soil. The Actinobacteria clones of the termite mound were diverse, distributed among 10 distinct families, and like those in the termite gut environment lightly dominated by the Nocardioidaceae family. Our findings confirmed that the soil-feeding termite mound (C. niokoloensis) represents a specific bacterial habitat in the tropics.


Biotechnology for Biofuels | 2013

Total solids content: a key parameter of metabolic pathways in dry anaerobic digestion.

J.-C. Motte; Eric Trably; Renaud Escudié; Jérôme Hamelin; Jean-Philippe Steyer; Nicolas Bernet; Jean-Philippe Delgenès; Claire Dumas

BackgroundIn solid-state anaerobic digestion (AD) bioprocesses, hydrolytic and acidogenic microbial metabolisms have not yet been clarified. Since these stages are particularly important for the establishment of the biological reaction, better knowledge could optimize the process performances by process parameters adjustment.ResultsThis study demonstrated the effect of total solids (TS) content on microbial fermentation of wheat straw with six different TS contents ranging from wet to dry conditions (10 to 33% TS). Three groups of metabolic behaviors were distinguished based on wheat straw conversion rates with 2,200, 1,600, and 1,400 mmol.kgVS-1 of fermentative products under wet (10 and 14% TS), dry (19 to 28% TS), and highly dry (28 to 33% TS) conditions, respectively. Furthermore, both wet and dry fermentations showed acetic and butyric acid metabolisms, whereas a mainly butyric acid metabolism occurred in highly dry fermentation.ConclusionSubstrate conversion was reduced with no changes of the metabolic pathways until a clear limit at 28% TS content, which corresponded to the threshold value of free water content of wheat straw. This study suggested that metabolic pathways present a limit of TS content for high-solid AD.


Nature Communications | 2015

Nutritional stress induces exchange of cell material and energetic coupling between bacterial species

Saida Benomar; David Ranava; María Luz Cárdenas; Eric Trably; Yan Rafrafi; Adrien Ducret; Jérôme Hamelin; Elisabeth Lojou; Jean-Philippe Steyer; Marie-Thérèse Giudici-Orticoni

Knowledge of the behaviour of bacterial communities is crucial for understanding biogeochemical cycles and developing environmental biotechnology. Here we demonstrate the formation of an artificial consortium between two anaerobic bacteria, Clostridium acetobutylicum (Gram-positive) and Desulfovibrio vulgaris Hildenborough (Gram-negative, sulfate-reducing) in which physical interactions between the two partners induce emergent properties. Molecular and cellular approaches show that tight cell-cell interactions are associated with an exchange of molecules, including proteins, which allows the growth of one partner (D. vulgaris) in spite of the shortage of nutrients. This physical interaction induces changes in expression of two genes encoding enzymes at the pyruvate crossroads, with concomitant changes in the distribution of metabolic fluxes, and allows a substantial increase in hydrogen production without requiring genetic engineering. The stress induced by the shortage of nutrients of D. vulgaris appears to trigger the interaction.


Journal of Applied Microbiology | 2009

Spatial and temporal variations of the bacterial community in the bovine digestive tract.

Rory Julien Michelland; Valérie Monteils; Asma Zened; Sylvie Combes; Laurent Cauquil; T. Gidenne; Jérôme Hamelin; L. Fortun-Lamothe

Aims:  Improved knowledge of the bacterial community of the digestive tract is required to enhance the efficiency of digestion in herbivores. This work aimed to study spatial and temporal variations of the bacterial communities in the bovine digestive tract and their correlation with gut environmental parameters.


Microbial Ecology | 2005

Frequency and Diversity of Nitrate Reductase Genes among Nitrate-Dissimilating Pseudomonas in the Rhizosphere of Perennial Grasses Grown in Field Conditions

L. Roussel-Delif; Sonia Estelle Tarnawski; Jérôme Hamelin; Laurent Philippot; Michel Aragno; Nathalie Fromin

A total of 1246 Pseudomonas strains were isolated from the rhizosphere of two perennial grasses (Lolium perenne and Molinia coerulea) with different nitrogen requirements. The plants were grown in their native soil under ambient and elevated atmospheric CO2 content (pCO2) at the Swiss FACE (Free Air CO2 Enrichment) facility. Root-, rhizosphere-, and non-rhizospheric soil–associated strains were characterized in terms of their ability to reduce nitrate during an in vitro assay and with respect to the genes encoding the membrane-bound (named NAR) and periplasmic (NAP) nitrate reductases so far described in the genus Pseudomonas. The diversity of corresponding genes was assessed by PCR-RFLP on narG and napA genes, which encode the catalytic subunit of nitrate reductases. The frequency of nitrate-dissimilating strains decreased with root proximity for both plants and was enhanced under elevated pCO2 in the rhizosphere of L. perenne. NAR (54% of strains) as well as NAP (49%) forms were present in nitrate-reducing strains, 15.5% of the 439 strains tested harbouring both genes. The relative proportions of narG and napA detected in Pseudomonas strains were different according to root proximity and for both pCO2 treatments: the NAR form was more abundant close to the root surface and for plants grown under elevated pCO2. Putative denitrifiers harbored mainly the membrane-bound (NAR) form of nitrate reductase. Finally, both narG and napA sequences displayed a high level of diversity. Anyway, this diversity was correlated neither with the root proximity nor with the pCO2 treatment.


Bioresource Technology | 2013

Microbial community signature of high-solid content methanogenic ecosystems

Amel Abbassi-Guendouz; Eric Trably; Jérôme Hamelin; Claire Dumas; Jean Philippe Steyer; Jean-Philippe Delgenès; Renaud Escudié

In this study, changes in bacterial and archaeal communities involved in anaerobic digestion processes operated with high solid contents were investigated. Batch tests were performed within a range of total solids (TS) of 10-35%. Between 10% and 25% TS, high methanogenic activity was observed and no overall specific structure of active bacterial communities was found. At 30% and 35%, methanogenesis was inhibited as a consequence of volatile fatty acids accumulation. Here, a specific bacterial signature was observed with three main dominant bacteria related to Clostridium sp., known for their ability to grow at low pH. Additionally, archaeal community was gradually impacted by TS content. Three archaeal community structures were observed with a gradual shift from Methanobacterium sp. to Methanosarcina sp., according to the TS content. Overall, several species were identified as biomarkers of methanogenesis inhibition, since bacterial and archaeal communities were highly specific at high TS contents.


Bioresource Technology | 2011

Influence of support material properties on the potential selection of Archaea during initial adhesion of a methanogenic consortium.

Frédéric Habouzit; Gaëlle Gévaudan; Jérôme Hamelin; Jean-Philippe Steyer; Nicolas Bernet

In anaerobic wastewater treatment systems, the complex microbial biomass including Archaea and Bacteria can be retained as a biofilm attached to solid supports. The aim of this study was to evaluate the impact of specific properties of support material on early microbial adhesion. Seven different substrata are described in terms of topography and surface energy. Adhesion of a methanogenic consortium to these substrata was tested, the adhesion was quantified as a percentage of the surface area covered and the bacterial and archaeal community structures was assessed by molecular fingerprinting profiles (CE-SSCP). As expected, the overall adhesion on the supports was influenced mainly by total surface energy. Moreover, the adhered communities were different from the parent inocula, including the Archaea/Bacteria ratio. This could have a significant impact on the start-up of anaerobic digesters for which supports favoring Archaea adhesion, responsible for the limiting reaction of the process, should be preferred.


Bioresource Technology | 2012

Carbon conversion efficiency and population dynamics of a marine algae–bacteria consortium growing on simplified synthetic digestate: First step in a bioprocess coupling algal production and anaerobic digestion

Christophe Vasseur; Gaël Bougaran; Matthieu Garnier; Jérôme Hamelin; Christophe Leboulanger; Myriam Le Chevanton; Behzad Mostajir; Bruno Sialve; Jean-Philippe Steyer; Eric Fouilland

Association of microalgae culture and anaerobic digestion seems a promising technology for sustainable algal biomass and biogas production. The use of digestates for sustaining the growth of microalgae reduces the costs and the environmental impacts associated with the substantial algal nutrient requirements. A natural marine algae-bacteria consortium was selected by growing on a medium containing macro nutrients (ammonia, phosphate and acetate) specific of a digestate, and was submitted to a factorial experimental design with different levels of temperature, light and pH. The microalgal consortium reached a maximum C conversion efficiency (i.e. ratio between carbon content produced and carbon supplied through light photosynthetic C conversion and acetate) of 3.6%. The presence of bacteria increased this maximum C conversion efficiency up to 6.3%. The associated bacterial community was considered beneficial to the total biomass production by recycling the carbon lost during photosynthesis and assimilating organic by-products from anaerobic digestion.


Environmental Microbiology Reports | 2014

Spatial distribution of microbial communities in the shallow submarine alkaline hydrothermal field of the Prony Bay, New Caledonia

Marianne Quéméneur; Méline Bes; Anne Postec; Nan Mei; Jérôme Hamelin; Christophe Monnin; Valérie Chavagnac; Claude Payri; Bernard Pelletier; Linda Guentas-Dombrowsky; Martine Gérard; Céline Pisapia; Emmanuelle Gérard; Bénédicte Ménez; Bernard Ollivier; Gaël Erauso

The shallow submarine hydrothermal field of the Prony Bay (New Caledonia) discharges hydrogen- and methane-rich fluids with low salinity, temperature (< 40°C) and high pH (11) produced by the serpentinization reactions of the ultramafic basement into the lagoon seawater. They are responsible for the formation of carbonate chimneys at the lagoon seafloor. Capillary electrophoresis single-strand conformation polymorphism fingerprinting, quantitative polymerase chain reaction and sequence analysis of 16S rRNA genes revealed changes in microbial community structure, abundance and diversity depending on the location, water depth, and structure of the carbonate chimneys. The low archaeal diversity was dominated by few uncultured Methanosarcinales similar to those found in other serpentinization-driven submarine and subterrestrial ecosystems (e.g. Lost City, The Cedars). The most abundant and diverse bacterial communities were mainly composed of Chloroflexi, Deinococcus-Thermus, Firmicutes and Proteobacteria. Functional gene analysis revealed similar abundance and diversity of both Methanosarcinales methanoarchaea, and Desulfovibrionales and Desulfobacterales sulfate-reducers in the studied sites. Molecular studies suggest that redox reactions involving hydrogen, methane and sulfur compounds (e.g. sulfate) are the energy driving forces of the microbial communities inhabiting the Prony hydrothermal system.

Collaboration


Dive into the Jérôme Hamelin's collaboration.

Top Co-Authors

Avatar

Jean-Philippe Steyer

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Eric Trably

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Nathalie Fromin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Michel Aragno

University of Neuchâtel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kim Milferstedt

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Eric Latrille

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jean-Jacques Godon

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicolas Bernet

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge