Jérôme Laurent
PSL Research University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jérôme Laurent.
Physical Review Letters | 2014
Benoît Gérardin; Jérôme Laurent; Arnaud Derode; Claire Prada; Alexandre Aubry
Thirty years ago, theorists showed that a properly designed combination of incident waves could be fully transmitted through (or reflected by) a disordered medium, based on the existence of propagation channels which are essentially either closed or open (bimodal law). In this Letter, we study elastic waves in a disordered waveguide and present direct experimental evidence of the bimodal law. Full transmission and reflection are achieved. The wave field is monitored by laser interferometry and highlights the interference effects that take place within the scattering medium.
Applied Physics Letters | 2014
Sylvain Mezil; Jérôme Laurent; Daniel Royer; Claire Prada
A non contact technique using zero-group velocity (ZGV) Lamb modes is developed to probe the bonding between two solid plates coupled by a thin layer. The layer thickness is assumed to be negligible compared with the plate thickness and the acoustic wavelength. The coupling layer is modeled by a normal and a tangential spring to take into account the normal and shear interfacial stresses. Theoretical ZGV frequencies are determined for a symmetrical bi-layer structure and the effect of the interfacial stiffnesses on the cut-off and ZGV frequencies are evaluated. Experiments are conducted with two glass plates bonded by a drop of water, oil, or salol, leading to a few micrometer thick layer. An evaluation of normal and shear stiffnesses is obtained using ZGV resonances locally excited and detected with laser ultrasonic techniques.
Applied Physics Letters | 2014
François Bruno; Jérôme Laurent; Daniel Royer; Michael Atlan
We report on an experimental demonstration of surface acoustic waves monitoring on a thin metal plate with heterodyne optical holography. Narrowband imaging of local optical pathlength modulation is achieved with a frequency-tunable time-averaged laser Doppler holographic imaging scheme on a sensor array, at video-rate. This method enables robust and quantitative mapping of out-of-plane vibrations of nanometric amplitudes at radiofrequencies.
Journal of the Acoustical Society of America | 2015
Sylvain Mezil; François Bruno; Samuel Raetz; Jérôme Laurent; Daniel Royer; Claire Prada
Zero-Group Velocity (ZGV) Lamb waves are studied in a structure composed of two plates bonded by an adhesive layer. The dispersion curves are calculated for a Duralumin/epoxy/Duralumin sample, where the adhesion is modeled by a normal and a tangential spring at both interfaces. Several ZGV modes are identified and their frequency dependence on interfacial stiffnesses and on the bonding layer thickness is numerically studied. Then, experiments achieved with laser ultrasonic techniques are presented. Local resonances are measured using a superimposed source and probe. Knowing the thicknesses and elastic constants of the Duralumin and epoxy layers, the comparison between theoretical and experimental ZGV resonances leads to an evaluation of the interfacial stiffnesses. A good agreement with theoretical dispersion curves confirms the identification of the resonances and the parameter estimations. This non-contact technique is promising for the local evaluation of bonded structures.
Journal of Applied Physics | 2016
Alan Geslain; Samuel Raetz; Morgan Hiraiwa; M. Abi Ghanem; S. P. Wallen; Nicholas Boechler; Jérôme Laurent; Claire Prada; Aroune Duclos; P Leclaire; Jean-Philippe Groby
We present a method for the recovery of complex wavenumber information via spatial Laplace transforms of spatiotemporal wave propagation measurements. The method aids in the analysis of acoustic attenuation phenomena and is applied in three different scenarios: (i) Lamb-like modes in air-saturated porous materials in the low kHz regime, where the method enables the recovery of viscoelastic parameters; (ii) Lamb modes in a Duralumin plate in the MHz regime, where the method demonstrates the effect of leakage on the splitting of the forward S1 and backward S2 modes around the Zero-Group Velocity point; and (iii) surface acoustic waves in a two-dimensional microscale granular crystal adhered to a substrate near 100 MHz, where the method reveals the complex wavenumbers for an out-of-plane translational and two in-plane translational-rotational resonances. This method provides physical insight into each system and serves as a unique tool for analyzing spatiotemporal measurements of propagating waves.
Journal of the Acoustical Society of America | 2015
Samuel Raetz; Jérôme Laurent; Thomas Dehoux; Daniel Royer; Bertrand Audoin; Claire Prada
Zero-group velocity (ZGV) Lamb modes are associated with sharp local acoustic resonances and allow, among other features, local measurement of Poissons ratio. While the thermoelastic generation of Lamb waves in metal plates has been widely studied, the case of materials of low-optical absorption remains unexplored. In materials such as glasses, the generation of bulk elastic waves has been demonstrated to be sensitive to the refracted light distribution. In this paper, a detailed analysis of the effect of light refraction on the laser-based generation of ZGV Lamb modes is presented. Experiments are performed on a bare glass plate without the need for an additional layer for light absorption or reflection. Using an appropriate tilted volume source, it is shown that the laser-ultrasonic technique allows non-contact measurement of the Poissons ratio.
Journal of the Acoustical Society of America | 2016
François Bruno; Jérôme Laurent; Paul Jehanno; Daniel Royer; Claire Prada
Optimization of Lamb modes induced by laser can be achieved by adjusting the spatial source distribution to the mode wavelength (λ). The excitability of Zero-Group Velocity (ZGV) resonances in isotropic plates is investigated both theoretically and experimentally for axially symmetric sources. Optimal parameters and amplitude gains are derived analytically for spot and annular sources of either Gaussian or rectangular energy profiles. For a Gaussian spot source, the optimal radius is found to be λZGV/π. Annular sources increase the amplitude by at least a factor of 3 compared to the optimal Gaussian source. Rectangular energy profiles provide higher gain than Gaussian ones. These predictions are confirmed by semi-analytical simulation of the thermoelastic generation of Lamb waves, including the effect of material attenuation. Experimentally, Gaussian ring sources of controlled width and radius are produced with an axicon-lens system. Measured optimal geometric parameters obtained for Gaussian and annular beams are in good agreement with theoretical predictions. A ZGV resonance amplification factor of 2.1 is obtained with the Gaussian ring. Such source should facilitate the inspection of highly attenuating plates made of low ablation threshold materials like composites.
Journal of Applied Physics | 2014
François Bruno; Jérôme Laurent; Claire Prada; Benjamin Lamboul; Bruno Passilly; Michael Atlan
We report on a wide-field optical monitoring method for revealing local delaminations in sandwich-type composite plates at video-rate by holographic vibrometry. Non-contact measurements of low frequency flexural waves is performed with time-averaged heterodyne holography. It enables narrowband imaging of local out-of-plane nanometric vibration amplitudes under sinusoidal excitation and reveals delamination defects, which cause local resonances of flexural waves. The size of the defect can be estimated from the first resonance frequency of the flexural wave and the mechanical parameters of the observed layer of the composite plate.
Journal of the Acoustical Society of America | 2016
Benoît Gérardin; Jérôme Laurent; Claire Prada; Alexandre Aubry
The paper studies the interaction of Lamb waves with the free edge of a plate. The reflection coefficients of a Lamb mode at a plate free edge are calculated using a semi-analytical method, as a function of frequency and angle of incidence. The conversion between forward and backward Lamb modes is thoroughly investigated. It is shown that at the zero-group velocity (ZGV) frequency, the forward S1 Lamb mode fully converts into the backward S2b Lamb mode at normal incidence. Besides, this conversion is very efficient over most of the angular spectrum and remains dominant at frequencies just above the ZGV-point. This effect is observed experimentally on a Duralumin plate. First, the S1 Lamb mode is selectively generated using a transducer array, second the S2b mode is excited using a single circular transducer. The normal displacement field is probed with an interferometer. The free edge is shown to retro-focus the incident wave at different depths depending on the wave number mismatch between the forward and backward propagating modes. In the vicinity of the ZGV-point, wave numbers coincide and the wave is retro-reflected on the source. In this frequency range, the free edge acts as a perfect phase conjugating mirror.
Journal of the Acoustical Society of America | 2018
Nicolas Bochud; Jérôme Laurent; François Bruno; Daniel Royer; Claire Prada
A method to recover the elastic properties, thickness, or orientation of the principal symmetry axes of anisotropic plates is presented. This method relies on the measurements of multimode guided waves, which are launched and detected in arbitrary directions along the plate using a multi-element linear transducer array driven by a programmable electronic device. A model-based inverse problem solution is proposed to optimally recover the properties of interest. The main contribution consists in defining an objective function built from the dispersion equation, which allows accounting for higher-order modes without the need to pair each experimental data point to a specific guided mode. This avoids the numerical calculation of the dispersion curves and errors in the mode identification. Compared to standard root-finding algorithms, the computational gain of the procedure is estimated to be on the order of 200. The objective function is optimized using genetic algorithms, which allow identifying from a single out-of-symmetry axis measurement the full set of anisotropic elastic coefficients and either the plate thickness or the propagation direction. The efficiency of the method is demonstrated using data measured on materials with different symmetry classes. Excellent agreement is found between the reported estimates and reference values from the literature.