Jérôme Margueron
University of Paris-Sud
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jérôme Margueron.
Publications of the Astronomical Society of Australia | 2015
Thierry Foglizzo; Rémi Kazeroni; Jérôme Guilet; F. Masset; Matthias González; Brendan K. Krueger; Jérôme Novak; Micaela Oertel; Jérôme Margueron; Julien Faure; Noël Martin; Patrick Blottiau; Bruno Peres; Gilles Durand
The explosion of core-collapse supernova depends on a sequence of events taking place in less than a second in a region of a few hundred kilometers at the center of a supergiant star, after the stellar core approaches the Chandrasekhar mass and collapses into a proto-neutron star, and before a shock wave is launched across the stellar envelope. Theoretical efforts to understand stellar death focus on the mechanism which transforms the collapse into an explosion. Progress in understanding this mechanism is reviewed with particular attention to its asymmetric character. We highlight a series of successful studies connecting observations of supernova remnants and pulsars properties to the theory of core-collapse using numerical simulations. The encouraging results from first principles models in axisymmetric simulations is tempered by new puzzles in 3D. The diversity of explosion paths and the dependence on the pre-collapse stellar structure is stressed, as well as the need to gain a better understanding of hydrodynamical and MHD instabilities such as SASI and neutrino-driven convection. The shallow water analogy of shock dynamics is presented as a comparative system where buoyancy effects are absent. This dynamical system can be studied numerically and also experimentally with a water fountain. The potential of this complementary research tool for supernova theory is analyzed. We also review its potential for public outreach in science museums.
Physical Review Letters | 2012
E. Khan; Jérôme Margueron; I. Vidaña
Only one-third of the nucleons in 208Pb occupy the saturation density area. Consequently, nuclear observables related to the average properties of nuclei, such as masses or radii, constrain the equation of state not at the saturation density but rather around the so-called crossing density, localized close to the mean value of the density of nuclei: ρ is approximately equal to 0.11 fm(-3). This provides an explanation for the empirical fact that several equation of state quantities calculated with various functionals cross at a density significantly lower than the saturation one. The third derivative M of the energy per unit of volume at the crossing density is constrained by the giant monopole resonance measurements in an isotopic chain rather than the incompressibility at saturation density. The giant monopole resonance measurements provide M=1100±70 MeV (6% uncertainty), whose extrapolation gives K(∞)=230±40 MeV (17% uncertainty).
EPL | 2012
Elisabeth Massot; Jérôme Margueron; G. Chanfray
Chiral Lagrangian and quark-meson coupling models of hyperon matter are used to estimate the maximum mass of neutron stars. Our relativistic calculations include, for the first time, both Hartree and Fock contributions in a consistent manner. Being related to the underlying quark structure of baryons, these models are considered to be good candidates for describing the dense core of neutron stars. Taking account of the known experimental constraints at saturation density, the equations of state deduced from these relativistic approaches cannot sustain a neutron star with a mass larger than 1.6–1.66M⊙.
Physical Review C | 2011
Camille Ducoin; Constança Providência; I. Vidaña; Jérôme Margueron
The possibility to draw links between the isospin properties of nuclei and the structure of compact stars is a stimulating perspective. In order to pursue this objective on a sound basis, the correlations from which such links can be deduced have to be carefully checked against model dependence. Using a variety of nuclear effective models and a microscopic approach, we study the relation between the predictions of a given model and those of a Taylor density development of the corresponding equation of state: this establishes to what extent a limited set of phenomenological constraints can determine the core-crust transition properties. From a correlation analysis, we show that (a) the transition density {rho}{sub t} is mainly correlated with the symmetry energy slope L, (b) the proton fraction Y{sub p,t} with the symmetry energy and symmetry energy slope (J,L) defined at saturation density, or, even better, with the same quantities defined at {rho}=0.1 fm{sup -3}, and (c) the transition pressure P{sub t} with the symmetry energy slope and curvature (L,K{sub sym}) defined at {rho}=0.1 fm{sup -3}.
Physical Review C | 2008
Jérôme Margueron; H. Sagawa; K. Hagino
We perform Hartree-Fock-Bogoliubov (HFB) calculations for semi-magic calcium, nickel, tin, and lead isotopes and
Physical Review C | 2007
Jérôme Margueron; H. Sagawa; K. Hagino
N=20,28,50
Physical Review C | 2003
Jérôme Margueron; Philippe Chomaz
, and 82 isotones using density-dependent pairing interactions recently derived from a microscopic nucleon-nucleon interaction. These interactions have an isovector component so that the pairing gaps in symmetric and neutron matter are reproduced. Our calculations well account for the experimental data for the neutron number dependence of binding energy, two-neutron separation energy, and odd-even mass staggering of these isotopes. This result suggests that by introducing the isovector term in the pairing interaction, one can construct a global effective pairing interaction that is applicable to nuclei in a wide range of the nuclear chart. It is also shown with the local density approximation that the pairing field deduced from the pairing gaps in infinite matter reproduces qualitatively well the pairing field for finite nuclei obtained with the HFB method.
Physical Review C | 2007
Nicolas Chamel; S. Naimi; E. Khan; Jérôme Margueron
We propose new types of density-dependent contact pairing interactions which reproduce the pairing gaps in symmetric and neutron matters obtained by a microscopic treatment based on realistic nucleon nucleon interaction. These interactions are able to simulate the pairing gaps of either the bare interaction or the interaction screened by the medium polarization effects. It is shown that the medium polarization effects cannot be cast into the usual density power law function of the contact interaction and require the introduction of another isoscalar term. The BCS-BEC crossover of neutron pairs in symmetric and asymmetric nuclear matters is studied by using these contact interactions. This work shows that the bare and screened pairing interactions lead to different features of the BCS-BEC crossover in symmetric nuclear matter. For the screened pairing interaction, a two-neutron BEC state is formed in symmetric matter at k{sub Fn}{approx}0.2 fm{sup -1} (neutron density {rho}{sub n}/{rho}{sub 0}{approx}10{sup -3}). In contrast, the bare interaction does not form the BEC state at any neutron density.
EPL | 2010
Camille Ducoin; Jérôme Margueron; Constança Providência
Asymmetric nuclear matter at sub-saturation densities is shown to present only one type of instabilities. The associated order parameter is dominated by the isoscalar density and so the transition is of liquid-gas type. The instability goes in the direction of a restoration of the isospin symmetry leading to a fractionation phenomenon. These conclusions are model independent since they can be related to the general form of the asymmetry energy. They are illustrated using density functional approaches.
Physical Review C | 2007
Jérôme Margueron; Eric Van Dalen; Christian Fuchs
Since the seminal work of Negele and Vautherin, the Wigner-Seitz approximation has been widely applied to study the inner crust of neutron stars formed of nuclear clusters immersed in a neutron sea. In this article, the validity of this approximation is discussed in the framework of the band theory of solids. For a typical cell of