Jérôme Mathé
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jérôme Mathé.
Analytical Chemistry | 2012
Linda Payet; Marlène Martinho; Manuela Pastoriza-Gallego; Jean-Michel Betton; Loïc Auvray; Jérôme Mathé
The nanopore technique has great potential to discriminate conformations of proteins. It is a very interesting system to mimic and understand the process of translocation of biomacromolecules through a cellular membrane. In particular, the unfolding and folding of proteins before and after going through the nanopore are not well understood. We study the thermal unfolding of a protein, probed by two protein nanopores: aerolysin and α-hemolysin. At room temperature, the native folded protein does not enter into the pore. When we increase the temperature from 25 to 50 °C, the molecules unfold and the event frequency of current blockade increases. A similar sigmoid function fits the normalized event frequency evolution for both nanopores, thus the unfolding curve does not depend on the structure and the net charge of the nanopore. We performed also a circular dichroism bulk experiment. We obtain the same melting temperature (around 45 °C) using the bulk and single molecule techniques.
EPL | 2008
G. Oukhaled; Laurent Bacri; Jérôme Mathé; L. Auvray
We study the transport of dextran sulfate molecules (Mw=8000 Da) through a bacterial α-hemolysin channel inserted into a bilayer lipid membrane submitted to an external electric field. We detect the current blockades induced by the molecules threading through one pore and vary the ionic strength in an unexplored range starting at 10−3 M. In the conditions of the experiment, the polyelectrolyte molecules enter the pore only if the Debye screening length is smaller than the pore radius in agreement with theory. We also observe that large potentials favour the passage of the molecules. The distribution of blockade durations suggests that a complex process governs the kinetics of the molecules. The dwelling time increases sharply as the Debye length increases and approaches the pore radius.
Biophysical Journal | 2010
Julien Muzard; Marlène Martinho; Jérôme Mathé; Ulrich Bockelmann; Virgile Viasnoff
This article explores the role of some geometrical factors on the electrophoretically driven translocations of macromolecules through nanopores. In the case of asymmetric pores, we show how the entry requirements and the direction of translocation can modify the information content of the blocked ionic current as well as the transduction of the electrophoretic drive into a mechanical force. To address these effects we studied the translocation of single-stranded DNA through an asymmetric alpha-hemolysin pore. Depending on the direction of the translocation, we measure the capacity of the pore to discriminate between both DNA orientations. By unzipping DNA hairpins from both sides of the pores we show that the presence of single strand or double strand in the pore can be discriminated based on ionic current levels. We also show that the transduction of the electrophoretic drive into a denaturing mechanical force depends on the local geometry of the pore entrance. Eventually we discuss the application of this work to the measurement of energy barriers for DNA unzipping as well as for protein binding and unfolding.
Biophysical Journal | 2015
Linda Payet; Marlène Martinho; Céline Merstorf; Manuela Pastoriza-Gallego; Virgile Viasnoff; Loïc Auvray; M. Muthukumar; Jérôme Mathé
We have investigated the role of electrostatic interactions in the transport of nucleic acids and ions through nanopores. The passage of DNA through nanopores has so far been conjectured to involve a free-energy barrier for entry, followed by a downhill translocation where the driving voltage accelerates the polymer. We have tested the validity of this conjecture by using two toxins, α-hemolysin and aerolysin, which differ in their shape, size, and charge. The characteristic timescales in each toxin as a function of temperature show that the entry barrier is ∼15 kBT and the translocation barrier is ∼35 kBT, although the electrical force in the latter step is much stronger. Resolution of this fact, using a theoretical model, reveals that the attraction between DNA and the charges inside the barrel of the pore is the most dominant factor in determining the translocation speed and not merely the driving electrochemical potential gradient.
Methods in Enzymology | 2010
Olga K. Dudko; Jérôme Mathé; Amit Meller
The time-dependent response of individual biomolecular complexes to an applied force can reveal their mechanical properties, interactions with other biomolecules, and self-interactions. In the past decade, a number of single-molecule methods have been developed and applied to a broad range of biological systems, such as nucleic acid complexes, enzymes and proteins in the skeletal and cardiac muscle sarcomere. Nanopore force spectroscopy (NFS) is an emerging single-molecule method, which takes advantage of the native electrical charge of biomolecule to exert a localized bond-rupture force and measure the biomolecule response. Here, we review the basic principles of the method and discuss two bond breakage modes utilizing either a fixed voltage or a steady voltage ramp. We describe a unified theoretical formalism to extract kinetic information from the NFS data, and illustrate the utility of this formalism by analyzing data from nanopore unzipping of individual DNA hairpin molecules, where the two bond breakage modes were applied.
Protein and Peptide Letters | 2014
Abdelghani Oukhaled; Manuela Pastoriza-Gallego; Laurent Bacri; Jérôme Mathé; Loïc Auvray
In this mini-review we introduce and discuss a new method, at single molecule level, to study the protein folding and protein stability, with a nanopore coupled to an electric detection. Proteins unfolded or partially folded passing through one channel submitted to an electric field, in the presence of salt solution, induce different detectable blockades of ionic current. Their duration depends on protein conformation. For different studies proteins through nanopores, completely unfolded proteins induce only short current blockades. Their frequency increases as the concentration of denaturing agent or temperature increases, following a sigmoidal denaturation curve. The geometry or the net charge of the nanopores does not alter the unfolding transition, sigmoidal unfolding curve and half denaturing concentration or half temperature denaturation. A destabilized protein induces a shift of the unfolding curve towards the lower values of the denaturant agent compared to the wild type protein.Partially folded proteins exhibit very long blockades in nanopores. The blockade duration decreases when the concentration of denaturing agent increases. The variation of these blockades could be associated to a possible glassy behaviour.
Journal of Colloid and Interface Science | 2008
Jérôme Mathé; Jean-Marc Di Meglio; Bernard Tinland
We report a study on the dynamics of latex polystyrene beads and of DNA molecules confined in two dimensions, using fluorescence video-microscopy. We particularly focus on the character of the confined objects (hard or soft) and on the nature of the confinement: liquid (in a soap film) or solid (between two glass plates). For weak confinements, whatever the nature of confinement, we observe that DNA molecules and latex beads behave very similarly: the tighter the confinement, the slower the diffusion with a good agreement with theory. For strong confinements between solid walls (thickness of confinement smaller than the bulk radius of gyration), DNA coils are not immobilized and still diffuse. We show in this case that the conformation of DNA chains is in good agreement with the predictions of De Gennes and Brochard (radius approximately e (-1/4), with e the confinement gap); on the other hand, we cannot really check the theoretical predictions for the diffusion coefficient. Interestingly, strong confinement of latex beads in a soap film leads to a anomalous slow diffusion, certainly associated with an additional viscous drag generated by the interfaces.
Methods of Molecular Biology | 2012
Céline Merstorf; Benjamin Cressiot; Manuela Pastoriza-Gallego; Abdel Ghani Oukhaled; Laurent Bacri; J. Gierak; Loïc Auvray; Jérôme Mathé
We present here an overview on unfolding of biomolecular structures as DNA double strands or protein folds. After some theoretical considerations giving orders of magnitude about transport timescales through pores, forces involved in unzipping processes … we present our experiments on DNA unzipping or protein unfolding using a nanopore. We point out the difficulties that can be encountered during these experiments, such as the signal analysis problems, noise issues, or experimental limitations of such system.
European Physical Journal E | 2018
Aziz Fennouri; Joana Ramiandrisoa; Laurent Bacri; Jérôme Mathé; Régis Daniel
Abstract.Seeking new tools for the analysis of glycosaminoglycans, we have compared the translocation of anionic oligosaccharides from hyaluronic acid using aerolysin and
WOMEN IN PHYSICS: Third IUPAP International Conference on Women in#N#Physics | 2009
B. Schiedt; A.L. Biance; Eric Le Bourhis; J. Gierak; Ali Madouri; Jérôme Mathé; Loïc Auvray; L. Bruchhaus; Ralf Jede
\alpha