Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jérôme Montfort is active.

Publication


Featured researches published by Jérôme Montfort.


Nature Communications | 2014

The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates

Camille Berthelot; Frédéric Brunet; Domitille Chalopin; Amélie Juanchich; Maria Bernard; Benjamin Noel; Pascal Bento; Corinne Da Silva; Karine Labadie; Adriana Alberti; Jean-Marc Aury; Alexandra Louis; Patrice Dehais; Philippe Bardou; Jérôme Montfort; Christophe Klopp; Cédric Cabau; Christine Gaspin; Gary H. Thorgaard; Mekki Boussaha; Edwige Quillet; René Guyomard; Delphine Galiana; Julien Bobe; Jean-Nicolas Volff; Carine Genet; Patrick Wincker; Olivier Jaillon; Hugues Roest Crollius

Vertebrate evolution has been shaped by several rounds of whole-genome duplications (WGDs) that are often suggested to be associated with adaptive radiations and evolutionary innovations. Due to an additional round of WGD, the rainbow trout genome offers a unique opportunity to investigate the early evolutionary fate of a duplicated vertebrate genome. Here we show that after 100 million years of evolution the two ancestral subgenomes have remained extremely collinear, despite the loss of half of the duplicated protein-coding genes, mostly through pseudogenization. In striking contrast is the fate of miRNA genes that have almost all been retained as duplicated copies. The slow and stepwise rediploidization process characterized here challenges the current hypothesis that WGD is followed by massive and rapid genomic reorganizations and gene deletions.


Oncogene | 2004

Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters

François Bertucci; Sébastien Salas; Séverine Eysteries; Valéry Nasser; Pascal Finetti; Christophe Ginestier; Emmanuelle Charafe-Jauffret; Béatrice Loriod; Loı̈c Bachelart; Jérôme Montfort; Geneviève Victorero; Frédéric Viret; Vincent Ollendorff; Vincent Fert; Marc Giovaninni; Jean-Robert Delpero; Catherine Nguyen; Patrice Viens; Geneviève Monges; Daniel Birnbaum; Rémi Houlgatte

Different diagnostic and prognostic groups of colorectal carcinoma (CRC) have been defined. However, accurate diagnosis and prediction of survival are sometimes difficult. Gene expression profiling might improve these classifications and bring new insights into underlying molecular mechanisms. We profiled 50 cancerous and noncancerous colon tissues using DNA microarrrays consisting of ∼8000 spotted human cDNA. Global hierarchical clustering was to some extent able to distinguish clinically relevant subgroups, normal versus cancer tissues and metastatic versus nonmetastatic tumours. Supervised analyses improved these segregations by identifying sets of genes that discriminated between normal and tumour tissues, tumours associated or not with lymph node invasion or genetic instability, and tumours from the right or left colon. A similar approach identified a gene set that divided patients with significantly different 5-year survival (100% in one group and 40% in the other group; P=0.005). Discriminator genes were associated with various cellular processes. An immunohistochemical study on 382 tumour and normal samples deposited onto a tissue microarray subsequently validated the upregulation of NM23 in CRC and a downregulation in poor prognosis tumours. These results suggest that microarrays may provide means to improve the classification of CRC, provide new potential targets against carcinogenesis and new diagnostic and/or prognostic markers and therapeutic targets.


Reproductive Biology and Endocrinology | 2006

Identification of new participants in the rainbow trout (Oncorhynchus mykiss) oocyte maturation and ovulation processes using cDNA microarrays

Julien Bobe; Jérôme Montfort; Thaovi Nguyen; Alexis Fostier

BackgroundThe hormonal control of oocyte maturation and ovulation as well as the molecular mechanisms of nuclear maturation have been thoroughly studied in fish. In contrast, the other molecular events occurring in the ovary during post-vitellogenesis have received far less attention.MethodsNylon microarrays displaying 9152 rainbow trout cDNAs were hybridized using RNA samples originating from ovarian tissue collected during late vitellogenesis, post-vitellogenesis and oocyte maturation. Differentially expressed genes were identified using a statistical analysis. A supervised clustering analysis was performed using only differentially expressed genes in order to identify gene clusters exhibiting similar expression profiles. In addition, specific genes were selected and their preovulatory ovarian expression was analyzed using real-time PCR.ResultsFrom the statistical analysis, 310 differentially expressed genes were identified. Among those genes, 90 were up-regulated at the time of oocyte maturation while 220 exhibited an opposite pattern. After clustering analysis, 90 clones belonging to 3 gene clusters exhibiting the most remarkable expression patterns were kept for further analysis. Using real-time PCR analysis, we observed a strong up-regulation of ion and water transport genes such as aquaporin 4 (aqp4) and pendrin (slc26). In addition, a dramatic up-regulation of vasotocin (avt) gene was observed. Furthermore, angiotensin-converting-enzyme 2 (ace2), coagulation factor V (cf5), adam 22, and the chemokine cxcl14 genes exhibited a sharp up-regulation at the time of oocyte maturation. Finally, ovarian aromatase (cyp19a1) exhibited a dramatic down-regulation over the post-vitellogenic period while a down-regulation of Cytidine monophosphate-N-acetylneuraminic acid hydroxylase (cmah) was observed at the time of oocyte maturation.ConclusionWe showed the over or under expression of more that 300 genes, most of them being previously unstudied or unknown in the fish preovulatory ovary. Our data confirmed the down-regulation of estrogen synthesis genes during the preovulatory period. In addition, the strong up-regulation of aqp4 and slc26 genes prior to ovulation suggests their participation in the oocyte hydration process occurring at that time. Furthermore, among the most up-regulated clones, several genes such as cxcl14, ace2, adam22, cf5 have pro-inflammatory, vasodilatory, proteolytics and coagulatory functions. The identity and expression patterns of those genes support the theory comparing ovulation to an inflammatory-like reaction.


BMC Genomics | 2007

Dynamic gene expression in fish muscle during recovery growth induced by a fasting-refeeding schedule.

Pierre-Yves Rescan; Jérôme Montfort; Cécile Rallière; Aurélie Le Cam; Diane Esquerre; Karine Hugot

BackgroundRecovery growth is a phase of rapid growth that is triggered by adequate refeeding of animals following a period of weight loss caused by starvation. In this study, to obtain more information on the system-wide integration of recovery growth in muscle, we undertook a time-course analysis of transcript expression in trout subjected to a food deprivation-refeeding sequence. For this purpose complex targets produced from muscle of trout fasted for one month and from muscle of trout fasted for one month and then refed for 4, 7, 11 and 36 days were hybridized to cDNA microarrays containing 9023 clones.ResultsSignificance analysis of microarrays (SAM) and temporal expression profiling led to the segregation of differentially expressed genes into four major clusters. One cluster comprising 1020 genes with high expression in muscle from fasted animals included a large set of genes involved in protein catabolism. A second cluster that included approximately 550 genes with transient induction 4 to 11 days post-refeeding was dominated by genes involved in transcription, ribosomal biogenesis, translation, chaperone activity, mitochondrial production of ATP and cell division. A third cluster that contained 480 genes that were up-regulated 7 to 36 days post-refeeding was enriched with genes involved in reticulum and Golgi dynamics and with genes indicative of myofiber and muscle remodelling such as genes encoding sarcomeric proteins and matrix compounds. Finally, a fourth cluster of 200 genes overexpressed only in 36-day refed trout muscle contained genes with function in carbohydrate metabolism and lipid biosynthesis. Remarkably, among the genes induced were several transcriptional regulators which might be important for the gene-specific transcriptional adaptations that underlie muscle recovery.ConclusionOur study is the first demonstration of a coordinated expression of functionally related genes during muscle recovery growth. Furthermore, the generation of a useful database of novel genes associated with muscle recovery growth will allow further investigations on particular genes, pathways or cellular process involved in muscle growth and regeneration.


BMC Genomics | 2009

Expression profiling of rainbow trout testis development identifies evolutionary conserved genes involved in spermatogenesis

Antoine D. Rolland; Jean-Jacques Lareyre; Anne-Sophie Goupil; Jérôme Montfort; Marie-Jo Ricordel; Diane Esquerré; Karine Hugot; Rémi Houlgatte; Frédéric Chalmel; Florence Le Gac

BackgroundSpermatogenesis is a late developmental process that involves a coordinated expression program in germ cells and a permanent communication between the testicular somatic cells and the germ-line. Current knowledge regarding molecular factors driving male germ cell proliferation and differentiation in vertebrates is still limited and mainly based on existing data from rodents and human. Fish with a marked reproductive cycle and a germ cell development in synchronous cysts have proven to be choice models to study precise stages of the spermatogenetic development and the germ cell-somatic cell communication network. In this study we used 9K cDNA microarrays to investigate the expression profiles underlying testis maturation during the male reproductive cycle of the trout, Oncorhynchus mykiss.ResultsUsing total testis samples at various developmental stages and isolated spermatogonia, spermatocytes and spermatids, 3379 differentially expressed trout cDNAs were identified and their gene activation or repression patterns throughout the reproductive cycle were reported. We also performed a tissue-profiling analysis and highlighted many genes for which expression signals were restricted to the testes or gonads from both sexes. The search for orthologous genes in genome-sequenced fish species and the use of their mammalian orthologs allowed us to provide accurate annotations for trout cDNAs. The analysis of the GeneOntology terms therefore validated and broadened our interpretation of expression clusters by highlighting enriched functions that are consistent with known sequential events during male gametogenesis. Furthermore, we compared expression profiles of trout and mouse orthologs and identified a complement of genes for which expression during spermatogenesis was maintained throughout evolution.ConclusionA comprehensive study of gene expression and associated functions during testis maturation and germ cell differentiation in the rainbow trout is presented. The study identifies new pathways involved during spermatogonia self-renewal or rapid proliferation, meiosis and gamete differentiation, in fish and potentially in all vertebrates. It also provides the necessary basis to further investigate the hormonal and molecular networks that trigger puberty and annual testicular recrudescence in seasonally breeding species.


Biology of Reproduction | 2013

Identification of Differentially Expressed miRNAs and Their Potential Targets During Fish Ovarian Development

Amélie Juanchich; Aurélie Le Cam; Jérôme Montfort; Julien Bobe

ABSTRACT Oogenesis is a complex process requiring the coordinated sequential expression of specific genes and ultimately leading to the release of the female gamete from the ovary. In the present study we aimed to investigate the contribution of miRNAs to the regulation of this key biological process in teleosts using a model in which growing oocytes develop simultaneously. Taking advantage of the strong sequence conservation of miRNAs among phylogenetically distant species, we designed a generic microarray displaying most known chordate miRNAs. It allowed us to provide an overview of the ovarian miRNome during oogenesis for the first time in any vertebrate species. We identified 13 differentially expressed miRNAs, and a differential expression of at least one miRNA was observed at each step of oogenesis. A surprisingly high differential expression of several miRNAs was observed at several stages of oogenesis and subsequently confirmed using quantitative PCR. By refining in silico prediction of target genes with gene expression data obtained within the same sample set, we provide strong evidence that miRNAs target major players of oogenesis, including genes involved in rate-limiting steps of steroidogenesis and those involved in gonadotropic control of oocyte development, as well as genes involved in ovulation, oocyte hydration, and acquisition of the ability of the oocyte to support further development once fertilized (i.e., oocyte developmental competence). Together, these observations stress the importance of miRNAs in the regulation and success of female gamete formation during oogenesis.


BMC Genomics | 2012

Oocyte-somatic cells interactions, lessons from evolution.

Cathy Charlier; Jérôme Montfort; Olivier Chabrol; Daphné Brisard; Thaovi Nguyen; Aurélie Le Cam; Laurent Richard-Parpaillon; François Moreews; Pierre Pontarotti; Svetlana Uzbekova; Franck Chesnel; Julien Bobe

BackgroundDespite the known importance of somatic cells for oocyte developmental competence acquisition, the overall mechanisms underlying the acquisition of full developmental competence are far from being understood, especially in non-mammalian species. The present work aimed at identifying key molecular signals from somatic origin that would be shared by vertebrates.ResultsUsing a parallel transcriptomic analysis in 4 vertebrate species - a teleost fish, an amphibian, and two mammals - at similar key steps of developmental competence acquisition, we identified a large number of species-specific differentially expressed genes and a surprisingly high number of orthologous genes exhibiting similar expression profiles in the 3 tetrapods and in the 4 vertebrates. Among the evolutionary conserved players participating in developmental competence acquisition are genes involved in key processes such as cellular energy metabolism, cell-to-cell communications, and meiosis control. In addition, we report many novel molecular actors from somatic origin that have never been studied in the vertebrate ovary. Interestingly, a significant number of these new players actively participate in Drosophila oogenesis.ConclusionsOur study provides a comprehensive overview of evolutionary-conserved mechanisms from somatic origin participating in oocyte developmental competence acquisition in 4 vertebrates. Together our results indicate that despite major differences in ovarian follicular structure, some of the key players from somatic origin involved in oocyte developmental competence acquisition would be shared, not only by vertebrates, but also by metazoans. The conservation of these mechanisms during vertebrate evolution further emphasizes the important contribution of the somatic compartment to oocyte quality and paves the way for future investigations aiming at better understanding what makes a good egg.


BMC Genomics | 2013

Gene expression profiling of the hyperplastic growth zones of the late trout embryo myotome using laser capture microdissection and microarray analysis

Pierre-Yves Rescan; Jérôme Montfort; Alain Fautrel; Cécile Rallière; Véronique Lebret

BackgroundA unique feature of fish is that new muscle fibres continue to be produced throughout much of the life cycle; a process termed muscle hyperplasia. In trout, this process begins in the late embryo stage and occurs in both a discrete, continuous layer at the surface of the primary myotome (stratified hyperplasia) and between existing muscle fibres throughout the myotome (mosaic hyperplasia). In post-larval stages, muscle hyperplasia is only of the mosaic type and persists until 40% of the maximum body length is reached. To characterise the genetic basis of myotube neoformation in trout, we combined laser capture microdissection and microarray analysis to compare the transcriptome of hyperplastic regions of the late embryo myotome with that of adult myotomal muscle, which displays only limited hyperplasia.ResultsGene expression was analysed using Agilent trout oligo microarrays. Our analysis identified more than 6800 transcripts that were significantly up-regulated in the superficial hyperplastic zones of the late embryonic myotome compared to adult myotomal muscle. In addition to Pax3, Pax7 and the fundamental myogenic basic helix-loop-helix regulators, we identified a large set of up-regulated transcriptional factors, including Myc paralogs, members of Hes family and many homeobox-containing transcriptional regulators. Other cell-autonomous regulators overexpressed in hyperplastic zones included a large set of cell surface proteins belonging to the Ig superfamily. Among the secreted molecules found to be overexpressed in hyperplastic areas, we noted growth factors as well as signalling molecules. A novel finding in our study is that many genes that regulate planar cell polarity (PCP) were overexpressed in superficial hyperplastic zones, suggesting that the PCP pathway is involved in the oriented elongation of the neofibres.ConclusionThe results obtained in this study provide a valuable resource for further analysis of novel genes potentially involved in hyperplastic muscle growth in fish. Ultimately, this study could yield insights into particular genes, pathways or cellular processes that may stimulate muscle regeneration in other vertebrates.


Gene | 2012

Characterization of rainbow trout gonad, brain and gill deep cDNA repertoires using a Roche 454-Titanium sequencing approach

Aurélie Le Cam; Julien Bobe; Olivier Bouchez; Cédric Cabau; Olivier Kah; Christophe Klopp; Jean-Jacques Lareyre; Isabelle Le Guen; Jérôme Lluch; Jérôme Montfort; François Moreews; Barbara Nicol; Patrick Prunet; Pierre-Yves Rescan; Arianna Servili

Rainbow trout, Oncorhynchus mykiss, is an important aquaculture species worldwide and, in addition to being of commercial interest, it is also a research model organism of considerable scientific importance. Because of the lack of a whole genome sequence in that species, transcriptomic analyses of this species have often been hindered. Using next-generation sequencing (NGS) technologies, we sought to fill these informational gaps. Here, using Roche 454-Titanium technology, we provide new tissue-specific cDNA repertoires from several rainbow trout tissues. Non-normalized cDNA libraries were constructed from testis, ovary, brain and gill rainbow trout tissue samples, and these different libraries were sequenced in 10 separate half-runs of 454-Titanium. Overall, we produced a total of 3million quality sequences with an average size of 328bp, representing more than 1Gb of expressed sequence information. These sequences have been combined with all publicly available rainbow trout sequences, resulting in a total of 242,187 clusters of putative transcript groups and 22,373 singletons. To identify the predominantly expressed genes in different tissues of interest, we developed a Digital Differential Display (DDD) approach. This approach allowed us to characterize the genes that are predominantly expressed within each tissue of interest. Of these genes, some were already known to be tissue-specific, thereby validating our approach. Many others, however, were novel candidates, demonstrating the usefulness of our strategy and of such tissue-specific resources. This new sequence information, acquired using NGS 454-Titanium technology, deeply enriched our current knowledge of the expressed genes in rainbow trout through the identification of an increased number of tissue-specific sequences. This identification allowed a precise cDNA tissue repertoire to be characterized in several important rainbow trout tissues. The rainbow trout contig browser can be accessed at the following publicly available web site (http://www.sigenae.org/).


PLOS ONE | 2015

Transcriptomic Analysis of Trout Gill Ionocytes in Fresh Water and Sea Water Using Laser Capture Microdissection Combined with Microarray Analysis

Isabelle Leguen; Aurélie Le Cam; Jérôme Montfort; Sandrine Peron; Alain Fautrel

Fish gills represent a complex organ composed of several cell types that perform multiple physiological functions. Among these cells, ionocytes are implicated in the maintenance of ion homeostasis. However, because the ionocyte represents only a small percent of whole gill tissue, its specific transcriptome can be overlooked among the numerous cell types included in the gill. The objective of this study is to better understand ionocyte functions by comparing the RNA expression of this cell type in freshwater and seawater acclimated rainbow trout. To realize this objective, ionocytes were captured from gill cryosections using laser capture microdissection after immunohistochemistry. Then, transcriptome analyses were performed on an Agilent trout oligonucleotide microarray. Gene expression analysis identified 108 unique annotated genes differentially expressed between freshwater and seawater ionocytes, with a fold change higher than 3. Most of these genes were up-regulated in freshwater cells. Interestingly, several genes implicated in ion transport, extracellular matrix and structural cellular proteins appeared up-regulated in freshwater ionocytes. Among them, several ion transporters, such as CIC2, SLC26A6, and NBC, were validated by qPCR and/or in situ hybridization. The latter technique allowed us to localize the transcripts of these ion transporters in only ionocytes and more particularly in the freshwater cells. Genes involved in metabolism and also several genes implicated in transcriptional regulation, cell signaling and the cell cycle were also enhanced in freshwater ionocytes. In conclusion, laser capture microdissection combined with microarray analysis allowed for the determination of the transcriptional signature of scarce cells in fish gills, such as ionocytes, and aided characterization of the transcriptome of these cells in freshwater and seawater acclimated trout.

Collaboration


Dive into the Jérôme Montfort's collaboration.

Top Co-Authors

Avatar

Aurélie Le Cam

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Julien Bobe

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Edwige Quillet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Pierre-Yves Rescan

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Mathilde Dupont-Nivet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Cécile Rallière

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jérôme Bugeon

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Thaovi Nguyen

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Alexis Fostier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Amine Bouchareb

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge