Jérôme Mounier
Teagasc
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jérôme Mounier.
Applied and Environmental Microbiology | 2005
Jérôme Mounier; Roberto Gelsomino; Stefanie Goerges; Marc Vancanneyt; Katrien Vandemeulebroecke; Bart Hoste; Siegfried Scherer; Jean Swings; Gerald F. Fitzgerald; Timothy M. Cogan
ABSTRACT The microbial composition of smear-ripened cheeses is not very clear. A total of 194 bacterial isolates and 187 yeast isolates from the surfaces of four Irish farmhouse smear-ripened cheeses were identified at the midpoint of ripening using pulsed-field gel electrophoresis (PFGE), repetitive sequence-based PCR, and 16S rRNA gene sequencing for identifying and typing the bacteria and Fourier transform infrared spectroscopy and mitochondrial DNA restriction fragment length polymorphism (mtDNA RFLP) analysis for identifying and typing the yeast. The yeast microflora was very uniform, and Debaryomyces hansenii was the dominant species in the four cheeses. Yarrowia lipolytica was also isolated in low numbers from one cheese. The bacteria were highly diverse, and 14 different species, Corynebacterium casei, Corynebacterium variabile, Arthrobacter arilaitensis, Arthrobacter sp., Microbacterium gubbeenense, Agrococcus sp. nov., Brevibacterium linens, Staphylococcus epidermidis, Staphylococcus equorum, Staphylococcus saprophyticus, Micrococcus luteus, Halomonas venusta, Vibrio sp., and Bacillus sp., were identified on the four cheeses. Each cheese had a more or less unique microflora with four to nine species on its surface. However, two bacteria, C. casei and A. arilaitensis, were found on each cheese. Diversity at the strain level was also observed, based on the different PFGE patterns and mtDNA RFLP profiles of the dominant bacterial and yeast species. None of the ripening cultures deliberately inoculated onto the surface were reisolated from the cheeses. This study confirms the importance of the adventitious, resident microflora in the ripening of smear cheeses.
Current Opinion in Biotechnology | 2009
Françoise Irlinger; Jérôme Mounier
The cheese microbiota, whose community structure evolves through a succession of different microbial groups, plays a central role in cheese-making. The subtleties of cheese character, as well as cheese shelf-life and safety, are largely determined by the composition and evolution of this microbiota. Adjunct and surface-ripening cultures marketed today for smear cheeses are inadequate for adequately mimicking the real diversity encountered in cheese microbiota. The interactions between bacteria and fungi within these communities determine their structure and function. Yeasts play a key role in the establishment of ripening bacteria. The understanding of these interactions offers to enhance cheese flavour formation and to control and/or prevent the growth of pathogens and spoilage microorganisms in cheese.
Journal of Applied Microbiology | 2006
Jérôme Mounier; Stefanie Goerges; Roberto Gelsomino; Marc Vancanneyt; Katrien Vandemeulebroecke; Bart Hoste; Nm Brennan; Siegfried Scherer; Jean Swings; Gf Fitzgerald; Tm Cogan
Aims: To determine the relationships between the major organisms from the cheese‐making personnel and environment and the surface of a smear cheese.
Applied and Environmental Microbiology | 2008
Stefanie Goerges; Jérôme Mounier; Mary C. Rea; Roberto Gelsomino; Valeska Heise; Ruediger Beduhn; Timothy M. Cogan; Marc Vancanneyt; Siegfried Scherer
ABSTRACT Production of smear-ripened cheese critically depends on the surface growth of multispecies microbial consortia comprising bacteria and yeasts. These microorganisms often originate from the cheese-making facility and, over many years, have developed into rather stable, dairy-specific associations. While commercial smear starters are frequently used, it is unclear to what degree these are able to establish successfully within the resident microbial consortia. Thus, the fate of the smear starters of a German Limburger cheese subjected to the “old-young” smearing technique was investigated during ripening. The cheese milk was supplemented with a commercial smear starter culture containing Debaryomyces hansenii, Galactomyces geotrichum, Arthrobacter arilaitensis, and Brevibacterium aurantiacum. Additionally, the cheese surface was inoculated with an extremely stable in-house microbial consortium. A total of 1,114 yeast and 1,201 bacterial isolates were identified and differentiated by Fourier transform infrared spectroscopy. Furthermore, mitochondrial DNA restriction fragment length polymorphism, random amplified polymorphic DNA, repetitive PCR, and pulsed field gel electrophoresis analyses were used to type selected isolates below the species level. The D. hansenii starter strain was primarily found early in the ripening process. The G. geotrichum starter strain in particular established itself after relocation to a new ripening room. Otherwise, it occurred at low frequencies. The bacterial smear starters could not be reisolated from the cheese surface at all. It is concluded that none of the smear starter strains were able to compete significantly and in a stable fashion against the resident microbial consortia, a result which might have been linked to the method of application. This finding raises the issue of whether addition of starter microorganisms during production of this type of cheese is actually necessary.
Comprehensive Reviews in Food Science and Food Safety | 2014
Nolwenn Hymery; Valérie Vasseur; Monika Coton; Jérôme Mounier; Jean-Luc Jany; Georges Barbier; Emmanuel Coton
Important fungi growing on cheese include Penicillium, Aspergillus, Cladosporium, Geotrichum, Mucor, and Trichoderma. For some cheeses, such as Camembert, Roquefort, molds are intentionally added. However, some contaminating or technological fungal species have the potential to produce undesirable metabolites such as mycotoxins. The most hazardous mycotoxins found in cheese, ochratoxin A and aflatoxin M1, are produced by unwanted fungal species either via direct cheese contamination or indirect milk contamination (animal feed contamination), respectively. To date, no human food poisoning cases have been associated with contaminated cheese consumption. However, although some studies state that cheese is an unfavorable matrix for mycotoxin production; these metabolites are actually detected in cheeses at various concentrations. In this context, questions can be raised concerning mycotoxin production in cheese, the biotic and abiotic factors influencing their production, mycotoxin relative toxicity as well as the methods used for detection and quantification. This review emphasizes future challenges that need to be addressed by the scientific community, fungal culture manufacturers, and artisanal and industrial cheese producers.
Applied and Environmental Microbiology | 2007
Jérôme Mounier; Mary C. Rea; Paula M. O'Connor; Gerald F. Fitzgerald; Timothy M. Cogan
ABSTRACT The growth characteristics of five bacteria, Brevibacterium aurantiacum 1-16-58, Corynebacterium casei DPC 5298T, Corynebacterium variabile DPC 5310, Microbacterium gubbeenense DPC 5286T, and Staphylococcus saprophyticus 4E61, all of which were isolated from the surface of smear cheese, were studied in complex and chemically defined media. All of the coryneforms, except M. gubbeenense, grew in 12% salt, while B. aurantiacum and S. saprophyticus grew in 15% salt. All five bacteria assimilated lactate in a semisynthetic medium, and none of the coryneform bacteria assimilated lactose. Glucose assimilation was poor, except by S. saprophyticus and C. casei. Five to seven amino acids were assimilated by the coryneforms and 12 by S. saprophyticus. Glutamate, phenylalanine, and proline were utilized by all five bacteria, whereas utilization of serine, threonine, aspartate, histidine, alanine, arginine, leucine, isoleucine, and glycine depended on the organism. Growth of C. casei restarted after addition of glutamate, proline, serine, and lactate at the end of the exponential phase, indicating that these amino acids and lactate can be used as energy sources. Pantothenic acid was essential for the growth of C. casei and M. gubbeenense. Omission of biotin reduced the growth of B. aurantiacum, C. casei, and M. gubbeenense. All of the bacteria contained lactate dehydrogenase activity (with both pyruvate and lactate as substrates) and glutamate pyruvate transaminase activity but not urease activity.
Fungal Biology | 2012
Antoine Hermet; Delphine Méheust; Jérôme Mounier; Georges Barbier; Jean-Luc Jany
The genus Mucor, a member of the order Mucorales, comprises different species encountered in cheeses. Although fungi play a fundamental role in cheese manufacturing and ripening, the taxonomy of many fungal species found in cheese is poorly defined; indeed, this is the case for Mucor spp. In the present study, we assessed the phylogenetic relationships among 70 Mucor strains, including 36 cheese isolates, by using a five gene phylogenetic approach combined with morphological analyses. Overall, at least six species of Mucor were identified among the cheese isolates including a possible new taxon. The present study also suggests that the genus Mucor comprises undescribed taxa and needs to be properly defined.
Food Microbiology | 2015
Emilie Delavenne; Sophie Cliquet; Clément Trunet; Georges Barbier; Jérôme Mounier; Gwenaelle Le Blay
Few antifungal protective cultures adapted to fermented dairy products are commercially available because of the numerous constraints linked to their market implementation. Consumers demand for naturally preserved food products is growing and the utilization of lactic acid bacteria is a promising way to achieve this goal. In this study, using a 2(5-1) factorial fractional design, we first evaluated the effects of fermentation time, of initial sucrose concentration and of the initial contamination amount of a spoilage yeast, on antifungal activities of single and mixed cultures of Lactobacillus rhamnosus K.C8.3.1I and Lactobacillus harbinensis K.V9.3.1Np in yogurt. L. harbinensis K.V9.3.1Np, the most relevant strain with regard to antifungal activity was then studied to determine its minimal inhibitory inoculation rate, its antifungal stability during storage and its impact on yogurt organoleptic properties. We showed that L. harbinensis K.V9.3.1Np maintained a stable antifungal activity over time, which was not affected by initial sucrose, nor by a reduction of the fermentation time. This inhibitory activity was an all-or-nothing phenomenon. Once L. harbinensis K.V9.3.1Np reached a population of ∼ 2.5 × 10(6) cfu/g of yogurt at the time of contamination, total inhibition of the yeast was achieved. We also showed that an inoculation rate of 5 × 10(6) cfu/ml in milk had no detrimental effect on yogurt organoleptic properties. In conclusion, L. harbinensis K.V9.3.1Np is a promising antifungal bioprotective strain for yogurt preservation.
Journal of Dairy Research | 2006
Jérôme Mounier; Françoise Irlinger; M.-N. Leclercq-Perlat; Anne-Sophie Sarthou; Henry-Eric Spinnler; Gerald F. Fitzgerald; Timothy M. Cogan
The growth of five bacteria isolated from red-smear cheeses, Brevibacterium aurantiacum, Corynebacterium casei, Corynebacterium variabile, Microbacterium gubbeenense and Staphylococcus saprophyticus in mixed cultures with Debaryomyces hansenii on aseptic model cheese curd at 10 and 14 degrees C was investigated. At both temperatures, C. casei and Micro. gubbeenense had a longer lag phase than C. variabile, Brevi. aurantiacum and Staph. saprophyticus. In all cultures, lactose was utilised first and was consumed more rapidly at 14 degrees C than at 10 degrees C, i.e., 6 d at 14 degrees C and 10 d at 10 degrees C. This utilisation coincided with the exponential growth of Deb. hansenii on the cheese surface. Lactate was also used as a carbon source and was totally consumed after 21 d at 14 degrees C and approximately 90% was consumed after 21 d at 10 degrees C regardless of the ripening culture. Small differences (<0.5 pH unit) in the surface-pH during ripening were noticeable between ripening cultures. Differences in the colour development of the mixed cultures with the yeast control were only noticeable after 15 d for Brevi. aurantiacum and after 21 d for the other bacteria. Regardless of the organisms tested, colour development and colour intensity were also greater at 14 degrees C than at 10 degrees C. This study has provided useful information on the growth and contribution to colour development of these bacteria on cheese.
International Journal of Food Microbiology | 2017
Lucille Garnier; Florence Valence; Audrey Pawtowski; Lizaveta Auhustsinava-Galerne; Nicolas Frotté; Riccardo Baroncelli; Franck Déniel; Emmanuel Coton; Jérôme Mounier
Yeasts and molds are responsible for dairy product spoilage, resulting in significant food waste and economic losses. Yet, few studies have investigated the diversity of spoilage fungi encountered in dairy products. In the present study, 175 isolates corresponding to 105 from various spoiled dairy products and 70 originating from dairy production environments, were identified using sequencing of the ITS region, the partial β-tubulin, calmodulin and/or EFα genes, and the D1-D2 domain of the 26S rRNA gene for filamentous fungi and yeasts, respectively. Among the 41 species found in spoiled products, Penicillium commune and Penicillium bialowiezense were the most common filamentous fungi, representing around 10% each of total isolates while Meyerozyma guilliermondii and Trichosporon asahii were the most common yeasts (4.8% each of total isolates). Several species (e.g. Penicillium antarcticum, Penicillium salamii and Cladosporium phyllophilum) were identified for the first time in dairy products or their environment. In addition, numerous species were identified in both spoiled products and their corresponding dairy production environment suggesting that the latter acts as a primary source of contamination. Secondly, the resistance to chemical preservatives (sodium benzoate, calcium propionate, potassium sorbate and natamycin) of 10 fungal isolates representative of the observed biodiversity was also evaluated. Independently of the fungal species, natamycin had the lowest minimum inhibitory concentration (expressed in gram of preservative/l), followed by potassium sorbate, sodium benzoate and calcium propionate. In the tested conditions, Cladosporium halotolerans and Didymella pinodella were the most sensitive fungi while Yarrowia lipolytica and Candida parapsilosis were the most resistant towards the tested preservatives. This study provides interesting information on the occurrence of fungal contaminants in dairy products and environments that may help developing adequate strategies for fungal spoilage control.