Jerome P. Lynch
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jerome P. Lynch.
The Shock and Vibration Digest | 2006
Jerome P. Lynch; Kenneth J. Loh
In recent years, there has been an increasing interest in the adoption of emerging sensing technologies for instrumentation within a variety of structural systems. Wireless sensors and sensor networks are emerging as sensing paradigms that the structural engineering field has begun to consider as substitutes for traditional tethered monitoring systems. A benefit of wireless structural monitoring systems is that they are inexpensive to install because extensive wiring is no longer required between sensors and the data acquisition system. Researchers are discovering that wireless sensors are an exciting technology that should not be viewed as simply a substitute for traditional tethered monitoring systems. Rather, wireless sensors can play greater roles in the processing of structural response data; this feature can be utilized to screen data for signs of structural damage. Also, wireless sensors have limitations that require novel system architectures and modes of operation. This paper is intended to serve as a summary review of the collective experience the structural engineering community has gained from the use of wireless sensors and sensor networks for monitoring structural performance and health.
Philosophical Transactions of the Royal Society A | 2007
Jerome P. Lynch
Wireless monitoring has emerged in recent years as a promising technology that could greatly impact the field of structural monitoring and infrastructure asset management. This paper is a summary of research efforts that have resulted in the design of numerous wireless sensing unit prototypes explicitly intended for implementation in civil structures. Wireless sensing units integrate wireless communications and mobile computing with sensors to deliver a relatively inexpensive sensor platform. A key design feature of wireless sensing units is the collocation of computational power and sensors; the tight integration of computing with a wireless sensing unit provides sensors with the opportunity to self-interrogate measurement data. In particular, there is strong interest in using wireless sensing units to build structural health monitoring systems that interrogate structural data for signs of damage. After the hardware and the software designs of wireless sensing units are completed, the Alamosa Canyon Bridge in New Mexico is utilized to validate their accuracy and reliability. To improve the ability of low-cost wireless sensing units to detect the onset of structural damage, the wireless sensing unit paradigm is extended to include the capability to command actuators and active sensors.
Smart Materials and Structures | 2007
Kenneth J. Loh; Junhee Kim; Jerome P. Lynch; Nadine Wong Shi Kam; Nicholas A. Kotov
Since the discovery of carbon nanotubes, researchers have been fascinated by their mechanical and electrical properties, as well as their versatility for a wide array of applications. In this study, a carbon nanotube–polyelectrolyte composite multilayer thin film fabricated by a layer-by-layer (LbL) method is proposed to develop a multifunctional material for measuring strain and corrosion processes. LbL fabrication of carbon nanotube composites yields mechanically strong thin films in which multiple sensing transduction mechanisms can be encoded. For example, judicious selection of carbon nanotube concentrations and polyelectrolyte matrices can yield thin films that exhibit changes in their electrical properties to strain and pH. In this study, experimental results suggest a consistent trend between carbon nanotube concentrations and strain sensor sensitivity. Furthermore, by simply altering the type of polyelectrolyte used, pH sensors of high sensitivity can be developed to potentially monitor environmental factors suggesting corrosion of metallic structural materials (e.g. steel, aluminum). (Some figures in this article are in colour only in the electronic version)
Smart Materials and Structures | 2006
Jerome P. Lynch; Yang Wang; Kenneth J. Loh; Jin-Hak Yi; Chung-Bang Yun
As researchers continue to explore wireless sensors for use in structural monitoring systems, validation of field performance must be done using actual civil structures. In this study, a network of low-cost wireless sensors was installed in the Geumdang Bridge, Korea to monitor the bridge response to truck loading. Such installations allow researchers to quantify the accuracy and robustness of wireless monitoring systems within the complex environment encountered in the field. In total, 14 wireless sensors were installed in the concrete box girder span of the Geumdang Bridge to record acceleration responses to forced vibrations introduced by a calibrated truck. In order to enhance the resolution of the capacitive accelerometers interfaced to the wireless sensors, a signal conditioning circuit that amplifies and filters low-level accelerometer outputs is proposed. The performance of the complete wireless monitoring system is compared to a commercial tethered monitoring system that was installed in parallel. The performance of the wireless monitoring system is shown to be comparable to that of the tethered counterpart. Computational resources (e.g. microcontrollers) coupled with each wireless sensor allow the sensor to estimate modal parameters of the bridge such as modal frequencies and operational displacement shapes. This form of distributed processing of measurement data by a network of wireless sensors represents a new data management paradigm associated with wireless structural monitoring. (Some figures in this article are in colour only in the electronic version)
Smart Structures and Materials 2003: Smart Systems and Nondestructive Evaluation for Civil Infrastructures | 2003
Venkata Anil Kottapalli; Anne S. Kiremidjian; Jerome P. Lynch; Ed Carryer; Thomas W. Kenny; Kincho H. Law; Ying Lei
In this paper, we make a brief study of some of the important requirements of a structural monitoring system for civil infrastructures and explain the key issues that are faced in the design of a suitable wireless monitoring strategy. Two-tiered wireless sensor network architecture is proposed as a solution to these issues and the protocol used for the communication in this network is described. The power saving strategies at various levels, from the network architecture, to communication protocol, to the sensor unit architecture are explained. A detailed analysis of the network is done and the implementation of this network in a laboratory setting is described.
Smart Materials and Structures | 2004
Jerome P. Lynch; Arvind Sundararajan; Kincho H. Law; Anne S. Kiremidjian; Ed Carryer
A low-cost wireless sensing unit is designed and fabricated for deployment as the building block of wireless structural health monitoring systems. Finite operational lives of portable power supplies, such as batteries, necessitate optimization of the wireless sensing unit design to attain overall energy efficiency. This is in conflict with the need for wireless radios that have far-reaching communication ranges that require significant amounts of power. As a result, a penalty is incurred by transmitting raw time-history records using scarce system resources such as battery power and bandwidth. Alternatively, a computational core that can accommodate local processing of data is designed and implemented in the wireless sensing unit. The role of the computational core is to perform interrogation tasks of collected raw time-history data and to transmit via the wireless channel the analysis results rather than time-history records. To illustrate the ability of the computational core to execute such embedded engineering analyses, a two-tiered time-series damage detection algorithm is implemented as an example. Using a lumped-mass laboratory structure, local execution of the embedded damage detection method is shown to save energy by avoiding utilization of the wireless channel to transmit raw time-history data.
Structure and Infrastructure Engineering | 2007
Yang Wang; Jerome P. Lynch; Kincho H. Law
Structural health monitoring (SHM) has become an important research problem which has the potential to monitor and ensure the performance and safety of civil structures. Traditional wire-based SHM systems require significant time and cost for cable installation. With the recent advances in wireless communication technology, wireless SHM systems have emerged as a promising alternative solution for rapid, accurate and low-cost structural monitoring. This paper presents a newly designed integrated wireless monitoring system that supports real-time data acquisition from multiple wireless sensing units. The selected wireless transceiver consumes relatively low power and supports long-distance peer-to-peer communication. In addition to hardware, embedded multithreaded software is also designed as an integral component of the proposed wireless monitoring system. A direct result of the multithreaded software paradigm is a wireless sensing unit capable of simultaneous data collection, data interrogation and wireless transmission. A reliable data communication protocol is designed and implemented, enabling robust real-time and near-synchronized data acquisition from multiple wireless sensing units. An integrated prototype system has been fabricated, assembled, and validated in both laboratory tests and in a large-scale field test conducted upon the Geumdang Bridge in Icheon, South Korea.
Journal of Intelligent Material Systems and Structures | 2008
Kenneth J. Loh; Jerome P. Lynch; Bongsup Shim; Nicholas A. Kotov
In recent years, carbon nanotubes have been utilized for a variety of applications, including nanoelectronics and various types of sensors. In particular, researchers have sought to take advantage of the superior electrical properties of carbon nanotubes for fabricating novel strain sensors. This article presents a single-walled carbon nanotube (SWNT)-polyelectrolyte (PE) composite thin film strain sensor fabricated with a layer-by-layer (LbL) process. Optimization of bulk SWNT-PE strain sensor properties is achieved by varying various LbL fabrication parameters, followed by characterization of strain-sensing electromechanical responses. A resistor and capacitor (RC)-circuit model is proposed and validated with electrical impedance spectroscopy to fit experimental results and to identify equivalent circuit element parameters sensitive to strain. Experimental results suggest consistent trends between SWNT and PE concentrations to strain sensor sensitivities. Simply by adjusting the weight fraction of SWNT solutions and film thickness, strain sensitivities between 0.1 and 1.8 have been achieved. While SWNT-PE strain sensitivity is lower than some metal-foil strain gauges (
Nanotechnology | 2007
Tsung Chin Hou; Kenneth J. Loh; Jerome P. Lynch
2), the LbL method allows for precise tailoring of the properties (i.e., strain sensitivity, resistivity, among others) of a high-capacity (±10,000 μm m-1) homogeneous multilayer strain sensor.
Journal of Structural Engineering-asce | 2009
R. Andrew Swartz; Jerome P. Lynch
This paper describes the application of electrical impedance tomography (EIT) to demonstrate the multifunctionality of carbon nanocomposite thin films under various types of environmental stimuli. Carbon nanotube (CNT) thin films are fabricated by a layer-by-layer (LbL) technique and mounted with electrodes along their boundaries. The response of the thin films to various stimuli is investigated by relying on electric current excitation and corresponding boundary potential measurements. The spatial conductivity variations are reconstructed based on a mathematical model for the EIT technique. Here, the ability of the EIT method to provide two-dimensional mapping of the conductivity of CNT thin films is validated by (1) electrically imaging intentional structural defects in the thin films and (2) mapping the films response to various pH environments. The ability to spatially image the conductivity of CNT thin films holds many promises for developing multifunctional CNT-based sensing skins.