Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jérôme Reboul is active.

Publication


Featured researches published by Jérôme Reboul.


Nature | 2003

BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3

Lai Xu; Yue Wei; Jérôme Reboul; Philippe Vaglio; Tae Ho Shin; Marc Vidal; Stephen J. Elledge; J. Wade Harper

Programmed destruction of regulatory proteins through the ubiquitin–proteasome system is a widely used mechanism for controlling signalling pathways. Cullins are proteins that function as scaffolds for modular ubiquitin ligases typified by the SCF (Skp1–Cul1–F-box) complex. The substrate selectivity of these E3 ligases is dictated by a specificity module that binds cullins. In the SCF complex, this module is composed of Skp1, which binds directly to Cul1, and a member of the F-box family of proteins. F-box proteins bind Skp1 through the F-box motif, and substrates by means of carboxy-terminal protein interaction domains. Similarly, Cul2 and Cul5 interact with BC-box-containing specificity factors through the Skp1-like protein elongin C. Cul3 is required for embryonic development in mammals and Caenorhabditis elegans but its specificity module is unknown. Here we report the identification of a large family of BTB-domain proteins as substrate-specific adaptors for C. elegans CUL-3. Biochemical studies using the BTB protein MEL-26 and its genetic target MEI-1 (refs 12, 13) indicate that BTB proteins merge the functional properties of Skp1 and F-box proteins into a single polypeptide.


EMBO Reports | 2001

A protein–protein interaction map of the Caenorhabditis elegans 26S proteasome

Anne Davy; Paul Bello; Nicolas Thierry-Mieg; Philippe Vaglio; Joseph Hitti; Lynn Doucette-Stamm; Danielle Thierry-Mieg; Jérôme Reboul; Simon J. Boulton; Albertha J. M. Walhout; Olivier Coux; Marc Vidal

The ubiquitin‐proteasome proteolytic pathway is pivotal in most biological processes. Despite a great level of information available for the eukaryotic 26S proteasome—the protease responsible for the degradation of ubiquitylated proteins—several structural and functional questions remain unanswered. To gain more insight into the assembly and function of the metazoan 26S proteasome, a two‐hybrid‐based protein interaction map was generated using 30 Caenorhabditis elegans proteasome subunits. The results recapitulate interactions reported for other organisms and reveal new potential interactions both within the 19S regulatory complex and between the 19S and 20S subcomplexes. Moreover, novel potential proteasome interactors were identified, including an E3 ubiquitin ligase, transcription factors, chaperone proteins and other proteins not yet functionally annotated. By providing a wealth of novel biological hypotheses, this interaction map constitutes a framework for further analysis of the ubiquitin‐proteasome pathway in a multicellular organism amenable to both classical genetics and functional genomics.


Nature Genetics | 2001

Open-reading-frame sequence tags (OSTs) support the existence of at least 17,300 genes in C. elegans

Jérôme Reboul; Philippe Vaglio; Nia Tzellas; Nicolas Thierry-Mieg; Troy Moore; Cindy Jackson; Tadasu Shin-I; Yuji Kohara; Danielle Thierry-Mieg; Jean Thierry-Mieg; Hongmei Lee; Joseph Hitti; Lynn Doucette-Stamm; James L. Hartley; Gary F. Temple; Michael A. Brasch; Jean Vandenhaute; Philippe Lamesch; David E. Hill; Marc Vidal

The genome sequences of Caenorhabditis elegans, Drosophila melanogaster and Arabidopsis thaliana have been predicted to contain 19,000, 13,600 and 25,500 genes, respectively. Before this information can be fully used for evolutionary and functional studies, several issues need to be addressed. First, the gene number estimates obtained in silico and not yet supported by any experimental data need to be verified. For example, it seems biologically paradoxical that C. elegans would have 50% more genes than Drosophilia. Second, intron/exon predictions need to be tested experimentally. Third, complete sets of open reading frames (ORFs), or “ORFeomes,” need to be cloned into various expression vectors. To address these issues simultaneously, we have designed and applied to C. elegans the following strategy. Predicted ORFs are amplified by PCR from a highly representative cDNA library using ORF-specific primers, cloned by Gateway recombination cloning and then sequenced to generate ORF sequence tags (OSTs) as a way to verify identity and splicing. In a sample (n=1,222) of the nearly 10,000 genes predicted ab initio (that is, for which no expressed sequence tag (EST) is available so far), at least 70% were verified by OSTs. We also observed that 27% of these experimentally confirmed genes have a structure different from that predicted by GeneFinder. We now have experimental evidence that supports the existence of at least 17,300 genes in C. elegans. Hence we suggest that gene counts based primarily on ESTs may underestimate the number of genes in human and in other organisms.


Molecular & Cellular Proteomics | 2013

The Human PDZome: A Gateway to PSD95-Disc Large-Zonula Occludens (PDZ)-mediated Functions

Edwige Belotti; Jolanta Polanowska; Avais M. Daulat; Stéphane Audebert; Virginie Thomé; Jean-Claude Lissitzky; Frédérique Lembo; Karim Blibek; Shizue Omi; Nicolas Lenfant; Akanksha Gangar; Mireille Montcouquiol; Marie-Josée Santoni; Michael Sebbagh; Michel Aurrand-Lions; Stephane Angers; Laurent Kodjabachian; Jérôme Reboul; Jean-Paul Borg

Protein–protein interactions organize the localization, clustering, signal transduction, and degradation of cellular proteins and are therefore implicated in numerous biological functions. These interactions are mediated by specialized domains able to bind to modified or unmodified peptides present in binding partners. Among the most broadly distributed protein interaction domains, PSD95-disc large-zonula occludens (PDZ) domains are usually able to bind carboxy-terminal sequences of their partners. In an effort to accelerate the discovery of PDZ domain interactions, we have constructed an array displaying 96% of the human PDZ domains that is amenable to rapid two-hybrid screens in yeast. We have demonstrated that this array can efficiently identify interactions using carboxy-terminal sequences of PDZ domain binders such as the E6 oncoviral protein and protein kinases (PDGFRβ, BRSK2, PCTK1, ACVR2B, and HER4); this has been validated via mass spectrometry analysis. Taking advantage of this array, we show that PDZ domains of Scrib and SNX27 bind to the carboxy-terminal region of the planar cell polarity receptor Vangl2. We also have demonstrated the requirement of Scrib for the promigratory function of Vangl2 and described the morphogenetic function of SNX27 in the early Xenopus embryo. The resource presented here is thus adapted for the screen of PDZ interactors and, furthermore, should facilitate the understanding of PDZ-mediated functions.


Development | 2012

Gipc1 has a dual role in Vangl2 trafficking and hair bundle integrity in the inner ear

Arnaud P. Giese; Jérôme Ezan; Lingyan Wang; Léa Lasvaux; Frédérique Lembo; Claire Mazzocco; Elodie Richard; Jérôme Reboul; Jean Paul Borg; Matthew W. Kelley; Nathalie Sans; John Brigande; Mireille Montcouquiol

Vangl2 is one of the central proteins controlling the establishment of planar cell polarity in multiple tissues of different species. Previous studies suggest that the localization of the Vangl2 protein to specific intracellular microdomains is crucial for its function. However, the molecular mechanisms that control Vangl2 trafficking within a cell are largely unknown. Here, we identify Gipc1 (GAIP C-terminus interacting protein 1) as a new interactor for Vangl2, and we show that a myosin VI-Gipc1 protein complex can regulate Vangl2 traffic in heterologous cells. Furthermore, we show that in the cochlea of MyoVI mutant mice, Vangl2 presence at the membrane is increased, and that a disruption of Gipc1 function in hair cells leads to maturation defects, including defects in hair bundle orientation and integrity. Finally, stimulated emission depletion microscopy and overexpression of GFP-Vangl2 show an enrichment of Vangl2 on the supporting cell side, adjacent to the proximal membrane of hair cells. Altogether, these results indicate a broad role for Gipc1 in the development of both stereociliary bundles and cell polarization, and suggest that the strong asymmetry of Vangl2 observed in early postnatal cochlear epithelium is mostly a ‘tissue’ polarity readout.


Developmental Biology | 2011

PAT-12, a potential anti-nematode target, is a new spectraplakin partner essential for Caenorhabditis elegans hemidesmosome integrity and embryonic morphogenesis

Suzannah Hetherington; Christelle Gally; Julie-Anne Fritz; Jolanta Polanowska; Jérôme Reboul; Yannick Schwab; Hala Zahreddine; Carolyn A. Behm; Michel Labouesse

Caenorhabditis elegans embryonic elongation depends on both epidermal and muscle cells. The hemidesmosome-like junctions, commonly called fibrous organelles (FOs), that attach the epidermis to the extracellular matrix ensure muscle anchoring to the cuticular exoskeleton and play an essential role during elongation. To further define how hemidesmosomes might control elongation, we searched for factors interacting with the core hemidesmosome component, the spectraplakin homolog VAB-10. Using the VAB-10 plakin domain as bait in a yeast two-hybrid screen, we identified the novel protein T17H7.4. We also identified T17H7.4 in an independent bioinformatic search for essential nematode-specific proteins that could define novel anti-nematode drug or vaccine targets. Interestingly, T17H7.4 corresponds to the C. elegans equivalent of the parasitic OvB20 antigen, and has a characteristic hemidesmosome distribution. We identified two mutations in T17H7.4, one of which defines the uncharacterized gene pat-12, previously identified in screens for genes required for muscle assembly. Using isoform-specific GFP constructs, we showed that one pat-12 isoform with a hemidesmosome distribution can rescue a pat-12 null allele. We further found that lack of pat-12 affects hemidesmosome integrity, with marked defects at the apical membrane. PAT-12 defines a novel component of C. elegans hemidesmosomes, which is required for maintaining their integrity. We suggest that PAT-12 helps maintaining VAB-10 attachment with matrix receptors.


PLOS ONE | 2013

Prevalence, Specificity and Determinants of Lipid-Interacting PDZ Domains from an In-Cell Screen and In Vitro Binding Experiments

Ylva Ivarsson; Anna Anna Maria Wawrzyniak; Rudra Kashyap; Jolanta Polanowska; Stéphane Betzi; Frédérique Lembo; Elke Vermeiren; Driss Chiheb; Nicolas Lenfant; Xavier Morelli; Jean-Paul Borg; Jérôme Reboul; Pascale Zimmermann

Background PDZ domains are highly abundant protein-protein interaction modules involved in the wiring of protein networks. Emerging evidence indicates that some PDZ domains also interact with phosphoinositides (PtdInsPs), important regulators of cell polarization and signaling. Yet our knowledge on the prevalence, specificity, affinity, and molecular determinants of PDZ-PtdInsPs interactions and on their impact on PDZ-protein interactions is very limited. Methodology/Principal Findings We screened the human proteome for PtdInsPs interacting PDZ domains by a combination of in vivo cell-localization studies and in vitro dot blot and Surface Plasmon Resonance (SPR) experiments using synthetic lipids and recombinant proteins. We found that PtdInsPs interactions contribute to the cellular distribution of some PDZ domains, intriguingly also in nuclear organelles, and that a significant subgroup of PDZ domains interacts with PtdInsPs with affinities in the low-to-mid micromolar range. In vitro specificity for the head group is low, but with a trend of higher affinities for more phosphorylated PtdInsPs species. Other membrane lipids can assist PtdInsPs-interactions. PtdInsPs-interacting PDZ domains have generally high pI values and contain characteristic clusters of basic residues, hallmarks that may be used to predict additional PtdInsPs interacting PDZ domains. In tripartite binding experiments we established that peptide binding can either compete or cooperate with PtdInsPs binding depending on the combination of ligands. Conclusions/Significance Our screen substantially expands the set of PtdInsPs interacting PDZ domains, and shows that a full understanding of the biology of PDZ proteins will require a comprehensive insight into the intricate relationships between PDZ domains and their peptide and lipid ligands.


Biochemical Pharmacology | 2016

GPCRs in invertebrate innate immunity

Jérôme Reboul; Jonathan J. Ewbank

G-protein coupled receptors (GPCRs) represent a privileged point of contact between cells and their surrounding environment. They have been widely adopted in vertebrates as mediators of signals involved in both innate and adaptive immunity. Invertebrates rely on innate immune defences to resist infection. We review here evidence from a number of different species, principally the genetically tractable Caenorhabditis elegans and Drosophila melanogaster that points to an important role for GPCRs in modulating innate immunity in invertebrates too. In addition to examples of GPCRs involved in regulating the expression of defence genes, we discuss studies in C. elegans addressing the role of GPCR signalling in pathogen aversive behaviour. Despite the many lacunae in our current knowledge, it is clear that GPCR signalling contributes to host defence across the animal kingdom.


Nature Genetics | 2001

The gene number dilemma: Direct evidence for at least 19,000 protein-encoding genes in C. elegans and implications for the human genome

Jérôme Reboul; Philippe Vaglio; N. Tzellas; C. Jackson; Troy Moore; Yuji Kohara; Jean Thierry-Mieg; Danielle Thierry-Mieg; Joseph Hitti; Lynn Doucette-Stamm; James L. Hartley; Gary F. Temple; Michael A. Brasch; David E. Hill; Marc Vidal

The gene number dilemma: direct evidence for at least 19,000 protein-encoding genes in Caenorhabditis elegans and implications for the human genome


Science | 2004

A Map of the Interactome Network of the Metazoan C. elegans

Siming Li; Christopher M. Armstrong; Nicolas Bertin; Hui Ge; Mike Boxem; Pierre Olivier Vidalain; Jing Dong J Han; Alban Chesneau; Tong Hao; Debra S. Goldberg; Ning Li; Monica Martinez; Jean François Rual; Philippe Lamesch; Lai Xu; Muneesh Tewari; Sharyl L. Wong; Lan V. Zhang; Gabriel F. Berriz; Laurent Jacotot; Philippe Vaglio; Jérôme Reboul; Tomoko Hirozane-Kishikawa; Qian-Ru Li; Harrison W. Gabel; Ahmed M. Elewa; Bridget Baumgartner; Debra J. Rose; Haiyuan Yu; Stephanie Bosak

Collaboration


Dive into the Jérôme Reboul's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lynn Doucette-Stamm

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Paul Borg

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge