Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jérôme Viers is active.

Publication


Featured researches published by Jérôme Viers.


Chemical Geology | 1999

Major and trace elements associated with colloids in organic-rich river waters: ultrafiltration of natural and spiked solutions

Bernard Dupré; Jérôme Viers; Jean-Louis Dandurand; Mireille Polvé; Pascale Bénézeth; Philippe Vervier; Jean-Jacques Braun

Abstract This study presents the results of ultrafiltration experiments (0.20 μm–300,000 Da–5000 Da–1000 Da) performed on natural rich-organic waters (30–40 mg l−1 of dissolved organic carbon) sampled in wetland area of Cameroon (Nsimi-Zoetele site). A very strong decrease in all cation concentrations (major and trace elements) except Si was observed after filtration. Speciation calculations using data available in the literature for metal–humic substance complexation observations suggest that ultrafiltration performed on this water source at a pH of 4.74 induces a very strong retention of cations only weakly bound to humic substances in the aqueous solution [Viers, J., Dupre, B., Polve, M., Schott, J., Dandurand, J.L., Braun, J.J., 1997. Chemical weathering in the drainage basin of a tropical watershed (Nsimi-Zoetele site, Cameroon): comparison between organic-poor and organic-rich waters. Chem. Geol., 140, 181–206]. To minimize this artifact, ultrafiltration must be performed at low pH (=3) or with the addition of high concentrations of a complexing metal (e.g., Lanthanum). The goal of these ultrafiltration experiments is to anticipate the affinity of several major and trace elements to form organo-metallic complexes with humic substances. Experiments using Sr and Ba isotopes at fixed ratios were entered in order to determine the exchangeable fraction of base cation. Natural Sr isotopic ratio ( 87 Sr / 86 Sr ) in different filtrates and retentates as well as isotopic ratios of Ba and Sr ( 86 Sr / 84 Sr and 138 Ba / 135 Ba ) in spiked and filtered samples appear to remain constant. These results suggest that there is only one source of Sr in these natural waters and that it is present in an exchangeable form (i.e., free ion and/or complexed with organic matter). By analogy, we suppose that elements such as Ca or Mg are not present in organic or mineral colloids but in an exchangeable position. This is in agreement with the hypothesis of the filtration artifact. In the filtration experiment, performed at pH 3, more than 95% of Al, Ga, Fe, U, Th, Y and REEs, ≅50% of Cr and V, 25% of Cu, 10% of Co, and ≤5% of Ca, Mg, Na, K, Mn, Ba, Rb and Sr are complexed with organic material. According to the data gathered in this study and the results of speciation calculations, the order and the overall constants (log K) for the formation of metal–humate complexes are the following: Al, Ga, Fe, Th, U, Y, REEs (more than 7)≫Cr (5.5)≫Co (3)>Rb, Ba, Sr, Mn, Mg (≈2). These data are obtained for both low ionic strength and low metal concentrations. Using the filtration experiment performed with an addition of La, we observe that REEs appear to be complexed with humic substances via two types of site. The first site has a strong affinity for the REEs but is not abundant. So the complexation by this site will be important when the REEs concentration is low. The second type of site is much more abundant but has a much smaller affinity for the complexation of REEs. This site will dominate when the REEs concentration is high. The first site remains unassigned but the second should be related to the carboxylic functional groups.


Chemical Geology | 2000

Major and trace element abundances, and strontium isotopes in the Nyong basin rivers (Cameroon): constraints on chemical weathering processes and elements transport mechanisms in humid tropical environments

Jérôme Viers; Bernard Dupré; Jean-Jacques Braun; Samuel Deberdt; Bernard Angeletti; Jules Ndam Ngoupayou; Annie Michard

This paper aims to improve our understanding of chemical weathering processes and element transport mechanisms in the humid tropical environments. We studied the Nyong River basin (27,800 km2) located on the northwestern part (Ntem Complex) of the Congo craton (central Africa). The dissolved concentrations (i.e., <0.20 μm) of major and trace elements, dissolved organic carbon (DOC) and the 87Sr/86Sr ratios have been measured in more than 20 rivers draining watersheds with various surface areas (∼1 to 28,000 km2). All these rivers exhibit low major cations concentrations (i.e., Na, Mg, K, Ca) but high concentrations of some trace elements (Al, Fe, Th, Zr, Y, REE), silica, and DOC. The total dissolved load (TDS) is low (∼20 mg l−1) and dominated by silica and organic matter. The comparison of different watersheds shows us that chemical weathering is more efficient in the small unit-watersheds. All the sampled rivers exhibit a wide range of 87Sr/86Sr ratios and high Ca/Na ratio that can be explained by the heterogeneity of the crystalline rock constituting the cratonic basement. Four selected rivers (Mengong, Awout, Soo, and Nyong) having different drainage areas and hydrological parameters were sampled over a 2-year period. Collected data show that all these rivers present the same monthly seasonal variations, with higher concentrations during rainy season and lower concentrations during dry season. This implies that the weathering and transport mechanisms of small watersheds can be extended to the whole Nyong basin. In the small unit-watersheds, chemical weathering mainly occurs in swamp zones where mineral dissolution is enhanced by humic substances. These swamp zones constitute a pool of organic-rich water, which can be quickly mobilized during rain seasons. In these waters, DOC and insoluble element concentrations (e.g., Al, Fe, and Th) were strongly correlated which show the key role of organic colloidal matter in the transport of some insoluble elements. Some other relationships (Al vs. Fe, REE vs. Al) were also examined in order to get information about chemical weathering or element transport. Based on these data, it has been concluded that the chemical composition of these river waters is controlled by geomorphic and historic factors (e.g., thick cation-poor soil). In contrast, the present day climatic parameters (high rainfall and temperature) play a minor role in water chemistry regulation even though they are likely to enhance mineral dissolution. Even if organic matter favors mineral dissolution, chemical weathering in this area is low compared to other world regions, which suggest, on a global scale, a relatively small effect of these environments on the CO2 consumption.


Geochimica et Cosmochimica Acta | 1999

The effect of organic matter on chemical weathering. Study of a small tropical watershed: Nsimi-Zoetele site, Cameroon

Priscia Oliva; Jérôme Viers; Bernard Dupré; Jean Pôl Fortuné; François Martin; Jean Jacques Braun; Daniel Nahon; Henri Robain

Abstract The effect of organic matter during soil/water interaction is still a debated issue on the controls of chemical weathering in a tropical environment. In order to study this effect in detail, we focused on the weathering processes occurring in a small tropical watershed (Nsimi-Zoetele, South Cameroon). This site offers an unique opportunity to study weathering mechanisms in a lateritic system within a small basin by coupling soil and water chemistry. The lateritic cover in this site can reach up to 40 m in depth and show two pedological distinct zones: unsaturated slope soils on the hills and/or elevated areas; and water-saturated soils in the swamp zone which represent 20% of the basin surface. The study present chemical analysis performed on water samples collected monthly from different localities between 1994–1997 and on soil samples taken during a well drilling in December 1997. The results suggest the existence of chemical and spatial heterogeneities of waters in the basin: colored waters flooding the swamp zone have much higher concentrations of both organic matter (i.e., DOC) and inorganic ions (e.g., Ca, Mg, Al, Fe, Th, Zr) than those from springs and groundwater from the hills. Nevertheless, these organic-rich waters present cation concentrations (Na, Ca, Mg, K) which are among the lowest compared to that of most world rivers. The main minerals in the soils are secondary kaolinite, iron oxi-hydroxides, quartz, and accessory minerals (e.g., zircon, rutile). We mainly focused on the mineralogical and geochemical study of the swamp zone soils and showed through SEM observations the textural characterization of weathered minerals such as kaolinite, zircon, rutile, and the secondary recrystallization of kaolinite microcrystals within the soil profile. Water chemistry and mineralogical observations suggest that hydromorphic soils of the swamp zone are responsible for almost all chemical weathering in the basin. Thus, in order to explain the increase of element concentration in the organic-rich waters, we suggest that organic acids enhance dissolution of minerals such as kaolinite, goethite, and zircon and also favors the transport of insoluble elements such as Al, Fe, Ti, Zr, and REE by chemical complexation. SiO2(aq) concentrations in these waters are above saturation with respect to quartz. Dissolution of phytholithes (amorphous silica) may be responsible for this relatively high SiO2(aq.) concentration. Al/Mg ratios obtained for the soil and the Mengong river waters show that a significant amount of Al does not leave the system due to kaolinite recrystallisation in the swamp zone soils. Geochemical data obtained for this watershed show the important contribution of vegetation and organic matter on chemical weathering in the swamp zone. Quantitatively we propose that the increasing amount in total dissolved solid (TDS) due to organic matter and vegetation effect is about 35%. In summary, this interaction between soils and waters occurs mostly in soils that are very depleted in soluble elements. Thus, the low concentration of major elements in these water is a direct consequence of the depleted nature of the soils.


Science of The Total Environment | 2014

Persisting impact of historical mining activity to metal (Pb, Zn, Cd, Tl, Hg) and metalloid (As, Sb) enrichment in sediments of the Gardon River, Southern France

Eléonore Resongles; Corinne Casiot; Rémi Freydier; Laurent Dezileau; Jérôme Viers; Françoise Elbaz-Poulichet

In this study, we assessed past and present influence of ancient mining activity on metal(loid) enrichment in sediments of a former mining watershed (Gardon River, SE France), that is now industrialized and urbanized. A sedimentary archive and current sediments were characterized combining geochemical analyses, zinc isotopic analyses and sequential extractions. The archive was used to establish local geochemical background and recorded (i) increasing enrichment factors (EFs) for Pb, Zn, Cd, Tl, Hg, As and Sb throughout the industrial era, (ii) a contamination peak in 1976 attributed to a tailings dam failure, and (iii) current levels in 2002 and 2011 similar to those of 1969, except for Sb and Hg, reflecting a persisting contamination pattern. Inter-element relationships and spatial distribution of EF values of current sediments throughout the watershed suggested that both ancient and current contamination had a common origin for Pb, Zn, Cd, Tl and As related to the exploitation of Pb/Zn mineralization while old Sb mines and coal extraction area were the main sources for Sb and Hg respectively. This prevailing mining origin was reflected for Zn by a relatively uniform isotopic composition at δ(66)Zn=0.23 ± 0.03‰, although slight decrease from 0.23‰ to 0.18‰ was recorded from upstream to downstream sites along the river course in relation with the contribution of the lighter δ(66)Zn signature (~0.08‰) of acid mine drainage impacted tributaries. Results from sequential extractions revealed that the potential mobility of the studied metal(loid)s varied in the order Sb<Tl≈As<Zn<Pb<Cd, with an increase of the mobile pool for Cd, Pb, Zn and to a lesser extent for As and Tl associated to increased enrichment. Altogether, these results tend to demonstrate that ancient mining activity still contributes to metal enrichment in the sediments of the Gardon River and that some of these metals may be mobilized toward the water compartment.


Aquatic Geochemistry | 2001

Evidence for Non-Conservative Behaviour of Chlorine in Humid Tropical Environments

Jérôme Viers; Bernard Dupré; Jean-Jacques Braun; Rémi Freydier; Sacha Greenberg; Jules Ndam Ngoupayou; Lus Sigha Nkamdjou

The knowledge of the biogeochemical cycle of chlorine (Cl)is important since this element is used as a tracer of geochemical and hydrological processes in oceanic or continental environments. More specifically, Cl can be used to correct surface water composition from atmospheric contribution in order to calculate precise chemical weathering rates in watersheds. Beyond the problem of potential Cl sources in a given watershed, which is directly related to the lithology, vegetation, and industrial activities, the Cl normalization is based on the assumption that this element behaves conservatively during surface processes (e.g., chemical weathering, adsorption/desorption processes).The purpose of the present study is to forecast the geochemical behavior of Cl in a forested ecosystem located under humid tropical environment.For this reason, we have analyzed the Cl (and also Ca and Na) concentrations ofsurface waters (rainwater, groundwater, river water) over a two-year period in the Nsimi–Zoetele watershed (Cameroon).The Cl mass balance for the watershed appears to be equilibrated over the studied period (1995–1996) but Cl behavior in Mengong River draining the watershed suggests a non-conservative behavior. Indeed, Cl concentrationsin the Mengong River are low during dry seasons and high during wet seasons, which is the reverse tendency to what is usually observed taking into account dilution and evaporation processes. As Cl concentrations in the Mengong River are lower than those measured in all the feeding reservoirs, Cl should be adsorbed onto the soils of the watershed. However, as the Cl mass balance is equilibrated over the whole-year, Cl should be adsorbed and releasedat a seasonal scale. The results we obtained for this small watershed were not generalized for a larger studied basin (i.e., Nyong River basin). Even if these results should be followed by further investigations, this study suggests that Cl normalization should be used with caution to avoid under- or over-estimation of chemical weathering rates.


International Journal of Environmental Studies | 2009

Western Siberia wetlands as indicator and regulator of climate change on the global scale

Sergey N. Kirpotin; A.E. Berezin; V.A. Bazanov; Yury Polishchuk; Sergey Vorobiov; Nina Mironycheva‐Tokoreva; Natalia Kosykh; Bernard Dupré; Oleg S. Pokrovsky; Alexei V. Kouraev; Elena Zakharova; Liudmila S. Shirokova; Nelly Mognard; Sylvain Biancamaria; Jérôme Viers; Maria Kolmakova

Western Siberia is a unique bog region. Siberian peatlands have been a major sink of atmospheric carbon since the last deglaciation and, on the other hand, in some epochs – like the present – they are the most powerful source of methane emission. About 104 Mha of Russian peatlands are located in Western Siberia, which consists almost completely of pristine peatland ecosystems. This paper considers the role of the Western Siberian peatlands in a global carbon balance and their possible influence on the formation of Earth’s climate.


Science of The Total Environment | 2013

Origin and fate of copper in a small Mediterranean vineyard catchment: New insights from combined chemical extraction and δ65Cu isotopic composition

D. El Azzi; Jérôme Viers; Maritxu Guiresse; Anne Probst; Dominique Aubert; J. Caparros; F. Charles; K. Guizien; Jean-Luc Probst

For centuries, many Mediterranean catchments were covered with vineyards in which copper was widely applied to protect grapevines against fungus. In the Mediterranean-type flow regime, brief and intense flood events increase the stream water discharge by up to 10 times and cause soil leaching and storm runoff. Because vineyards are primarily cultivated on steep slopes, high Cu fluxes are discharged by surface water runoff into the rivers. The purpose of this work was to investigate the riverine behavior and transport of anthropogenic Cu by coupling a sequential chemical extraction (SCE) procedure, used to determine Cu partitioning between residual and non-residual fractions, with δ(65)Cu isotopic measurements in each fraction. In the Baillaury catchment, France, we sampled soils (cultivated and abandoned), river bed sediments (BS), suspended particulate matter (SPM), and river water during the flash flood event of February 2009. Copper partitioning using SCE show that most of Cu in abandoned vineyard soil was in the residual phase (>60%) whereas in cultivated soil, BS and SPM, Cu was mostly (>25%) in non-residual fractions, mainly adsorbed onto iron oxide fractions. A small fraction of Cu was associated with organic matter (5 to 10%). Calculated enrichment factors (EF) are higher than 2 and the anthropogenic contribution was estimated between 50 to 85%. Values for δ(65)Cu in bulk samples were similar to bedrock therefore; δ(65)Cu on SCE fractions of superficial soils and SPM allowed for discrimination between Cu origin and distribution. Copper in residual fractions was of natural mineral origin (δ(65)Cu close to local bedrock, +0.07‰). Copper in water soluble fraction of SPM (δ(65)Cu=+0.26‰) was similar to dissolved river Cu (δ(65)Cu=+0.31‰). Copper from fungicide treatment (δ(65)Cu=-0.35‰) was bound to organic matter (δ(65)Cu=-0.20‰) without or with slight isotopic fractioning. A preferential adsorption of (65)Cu onto iron oxides (δ(65)Cu=+0.5‰) is shown.


Geochemistry Geophysics Geosystems | 2006

Seasonal dissolved rare earth element dynamics of the Amazon River main stem, its tributaries, and the Curuaí floodplain

Gwénaël Barroux; Jeroen E. Sonke; Geraldo Resende Boaventura; Jérôme Viers; Yves Goddéris; Marie-Paule Bonnet; Francis Sondag; Sébastien Gardoll; Christelle Lagane; Patrick Seyler

We present a comprehensive dissolved rare earth element (REE) data set for the Amazon River and its main tributaries, Rio Negro, Solimoes, and Madeira, as well as the Curuai floodplain. The two-year time series show that REE vary seasonally with discharge in each of the tributaries, and indicate a hydrologically dominated control. Upper crust normalized REE patterns are relatively constant throughout the year, with Ce/Ce* anomalies being positively related to discharge. We propose revised annual dissolved REE fluxes to the surface Atlantic Ocean based on an integration of the seasonal data. For Nd (<0.22 μm) this results in an average flux of 607 ± 43 T/yr, which is at least 1.6 times larger than the previous estimate of 374 T/yr (<0.45 μm) based on low water stage data. Moreover, during the high water season the maximum Nd flux measures 1277 t.yr−1, constituting 30% of the required flux to the Atlantic Ocean (Tachikawa et al., 2003). Consequently, a smaller contribution of Nd from atmospheric and river particle desorption is required than was previously suggested. A mass balance of Amazon tributaries and observed fluxes at Obidos indicates that dissolved LREE behave quasi-conservatively. Conversely, the HREE mass balance presents a deficit during the high water stages, which could be related to the passage of water through the floodplain system accompanied by solid/dissolved phase transfer.


Reference Module in Earth Systems and Environmental Sciences#R##N#Treatise on Geochemistry (Second Edition) | 2014

7.6 – Chemical Weathering Rates, CO2 Consumption, and Control Parameters Deduced from the Chemical Composition of Rivers

Jérôme Viers; Priscia Oliva; Jean-Louis Dandurand; Bernard Dupré; J. Gaillardet

Chemical weathering of rocks is a spontaneous (i.e., irreversible) thermodynamic process leading to a more stable state for natural materials under a given set of conditions (e.g., temperature and pressure). It results from the reaction of aqueous, acidic, and oxidizing solutions with the minerals in rocks and soils. There is no doubt that the increasing number of studies dealing with chemical weathering during recent decades is related to increasing concern about global climate change. This chapter will consider these questions. The objective is to estimate chemical weathering rates of silicates, and to define which parameters control these rates at a global scale on the basis of the chemical composition of rivers draining both small and large watersheds. The importance of parameters controlling chemical weathering rates should be evaluated and included in climate models.


Biogeochemistry | 2013

Seasonal and spatial variability of elemental concentrations in boreal forest larch foliage of Central Siberia on continuous permafrost

Jérôme Viers; A. S. Prokushkin; Oleg S. Pokrovsky; Y. Auda; A. V. Kirdyanov; E. Beaulieu; C. Zouiten; Priscia Oliva; Bernard Dupré

We measured the seasonal dynamics of major and trace elements concentrations in foliage of larch, main conifer species of Siberia, and we analyzed cryogenic soils collected in typical permafrost-dominated habitats in the Central Siberia. This region offers a unique opportunity to study element fractionation between the soil and the plant because of (i) the homogeneous geological substratum, (ii) the monospecific stands (Larix gmelinii) and (iii) the contrasted habitats (North-facing slope, South-facing slope, and Sphagnum peatbog) in terms of soil temperature, moisture, thickness of the active layer, tree biomass and rooting depth. The variation of these parameters from one habitat to the other allowed us to test the effects of these parameters on the element concentration in larch foliage considered with high seasonal resolution. Statistical treatment of data on larch needles collected 4 times in 3 locations during entire growing season (June–September) demonstrated that : (1) there is a high similarity of foliar chemical composition of larch trees in various habitats suggesting intrinsically similar requirements of larch tree growth for nutrients, (2) the variation of elemental concentrations in larch needles is controlled by the period (within the growing season) and not by the geographical location (South-facing slope, North-facing slope or bog zone) and (3) there are three groups of elements according to their patterns of elements concentration in needles over the growing season from June to September can be identified: (1): nutrient elements [P, Cu, Rb, K, B, Na, Zn, Ni and Cd] showing a decrease of concentration from June to September similar to the behaviour of major nutrients such as N, P and K; (2): accumulating elements [Ca, Mg, Mo, Co, Sr, Mn, Pb and Cr] showing an increase of concentration from June–July to September; (3): indifferent elements [Al, Zr, Fe, Ba, Ti, REEs (Pr, Nd, Ce, La, Gd, Er, Dy, Tb, Lu, Yb, Tm, Sm, Ho, Eu), Y, Th and U] showing a decrease of concentration from June to July and then an increase of concentration to September. A number of micronutrients (e.g., Cu, Zn) demonstrate significant resorption at the end of growing season suggesting possible limitation by these elements. Although the intrinsic requirement seems to be similar among habitats, the total amount of element stored within the different habitats is drastically different due to the differences in standing tree biomass. The partitioning coefficients between soil and larch appear to be among the lowest compared to other environments with variable plants, soils and climates. Applying the “space for time” substitution scenario, it follows that under ongoing climate warming there will be an increase of the element stock following enhanced above-ground biomass accumulation, even considering zero modification of element ratios and their relative mobility. In this sense, the habitats like south-facing slopes can serve as resultant of climate warming effect on element cycling in larch ecosystems for the larger territory of Central Siberia.

Collaboration


Dive into the Jérôme Viers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. S. Prokushkin

Sukachev Institute of Forest

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Priscia Oliva

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rémi Freydier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge