Jerònia Lladó
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jerònia Lladó.
Molecular and Cellular Neuroscience | 2004
Jerònia Lladó; Christine Haenggeli; Nicholas J. Maragakis; Evan Y. Snyder; Jeffrey D. Rothstein
Besides their capacity to give rise to neurons and/or glia, neural stem cells (NSCs) appear to inherently secrete neurotrophic factors beneficial to injured neurons. To test this potential, we have implanted NSCs onto or adjacent to spinal cord cultures. When NSCs were placed adjacent to the spinal cord sections, motor neuron axons grew toward the NSCs. Furthermore, conditioned medium from NSCs cultures was also able to induce similar axonal outgrowth, suggesting that these NSCs secrete soluble factors that have tropic and/or trophic properties. ELISA revealed that the NSCs secrete glial cell-line-derived factor (GDNF) and nerve growth factor (NGF). Interestingly, preincubation of the conditioned medium with GDNF-blocking antibodies abolished axonal outgrowth. We also showed that NSCs can protect spinal cord cultures from experimentally induced excitotoxic damage. The neuroprotective potential of NSCs was further confirmed in vivo by their ability to protect against motor neuron cell death.
Mediators of Inflammation | 2014
Gabriel Olmos; Jerònia Lladó
Tumor necrosis factor alpha (TNF-α) is a proinflammatory cytokine that exerts both homeostatic and pathophysiological roles in the central nervous system. In pathological conditions, microglia release large amounts of TNF-α; this de novo production of TNF-α is an important component of the so-called neuroinflammatory response that is associated with several neurological disorders. In addition, TNF-α can potentiate glutamate-mediated cytotoxicity by two complementary mechanisms: indirectly, by inhibiting glutamate transport on astrocytes, and directly, by rapidly triggering the surface expression of Ca+2 permeable-AMPA receptors and NMDA receptors, while decreasing inhibitory GABAA receptors on neurons. Thus, the net effect of TNF-α is to alter the balance of excitation and inhibition resulting in a higher synaptic excitatory/inhibitory ratio. This review summarizes the current knowledge of the cellular and molecular mechanisms by which TNF-α links the neuroinflammatory and excitotoxic processes that occur in several neurodegenerative diseases, but with a special emphasis on amyotrophic lateral sclerosis (ALS). As microglial activation and upregulation of TNF-α expression is a common feature of several CNS diseases, as well as chronic opioid exposure and neuropathic pain, modulating TNF-α signaling may represent a valuable target for intervention.
Journal of Neurochemistry | 2008
Laia Tolosa; Margalida Mir; Víctor J. Asensio; Gabriel Olmos; Jerònia Lladó
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective death of motoneurons. Recently, vascular endothelial growth factor (VEGF) has been identified as a neurotrophic factor and has been implicated in the mechanisms of pathogenesis of ALS and other neurological diseases. The potential neuroprotective effects of VEGF in a rat spinal cord organotypic culture were studied in a model of chronic glutamate excitotoxicity in which glutamate transporters are inhibited by threohydroxyaspartate (THA). Particularly, we focused on the effects of VEGF in the survival and vulnerability to excitotoxicity of spinal cord motoneurons. VEGF receptor‐2 was present on spinal cord neurons, including motoneurons. Chronic (3 weeks) treatment with THA induced a significant loss of motoneurons that was inhibited by co‐exposure to VEGF (50 ng/mL). VEGF activated the phosphatidylinositol 3‐kinase/Akt (PI3‐K/Akt) signal transduction pathway in the spinal cord cultures, and the effect on motoneuron survival was fully reversed by the specific PI3‐K inhibitor, LY294002. VEGF also prevented the down‐regulation of Bcl‐2 and survivin, two proteins implicated in anti‐apoptotic and/or anti‐excitotoxic effects, after THA exposure. Together, these findings indicate that VEGF has neuroprotective effects in rat spinal cord against chronic glutamate excitotoxicity by activating the PI3‐K/Akt signal transduction pathway and also reinforce the hypothesis of the potential therapeutic effects of VEGF in the prevention of motoneuron degeneration in human ALS.
Science Translational Medicine | 2012
Yang D. Teng; Susanna C. Benn; Steven N. Kalkanis; Jeremy M. Shefner; Renna C. Onario; Bin Cheng; Mahesh Lachyankar; Michael Marconi; Jianxue Li; Dou Yu; Inbo Han; Nicholas J. Maragakis; Jerònia Lladó; Kadir Erkmen; D. Eugene Redmond; Richard L. Sidman; Serge Przedborski; Jeffrey D. Rothstein; Robert H. Brown; Evan Y. Snyder
A meta-analysis reports the beneficial effects of transplanting mouse or human neural stem cells into the spinal cord of the SOD1G93A mouse, a model of ALS. Stem Cells to the Rescue Amyotrophic lateral sclerosis (ALS) or Lou Gehrig’s disease is an untreatable fatal disorder characterized by rapid and unremitting degeneration of nerve cells in the spinal cord that enable movement and respiration. Multiple processes involving these neurons and other cell types have been implicated as the cause of this disease. Neural stem cells (NSCs) normally function in the nervous system to create structures during development and to restore function to damaged systems throughout life. When these cells are isolated from the nervous system, grown and expanded in a dish, and then transplanted back into a diseased or injured part of the nervous system, they are thought to be able to perform at least some of these same tasks by producing therapeutic factors, improving the milieu, rescuing dying neurons, protecting neural connections, and reducing inflammation. Transplanted NSCs might be able to ameliorate some of the pathological processes that occur in ALS. Teng et al. now test this hypothesis by performing a meta-analysis of 11 studies that have transplanted mouse or human NSCs into the spinal cord of the transgenic mutant SOD1 ALS mouse. The authors found that disease onset and progression were slowed, such that extensive, often motor symptom-reduced, survival was predictably achievable in a subset of animals. This was particularly noticeable in those mice where transplanted NSCs covered a large part of the spinal cord including regions mediating vital functions such as respiration. The benefits of transplanted NSCs seem to be derived from a number of different actions including production of trophic factors, preservation of neuromuscular function, and a reduction in astrogliosis and inflammation. Through multiple modulatory mechanisms, NSCs may have potential for treating ALS and other untreatable degenerative diseases. Amyotrophic lateral sclerosis (ALS) is a lethal disease characterized by the unremitting degeneration of motor neurons. Multiple processes involving motor neurons and other cell types have been implicated in its pathogenesis. Neural stem cells (NSCs) perform multiple actions within the nervous system to fulfill their functions of organogenesis and homeostasis. We test the hypothesis that transplanted, undifferentiated multipotent migratory NSCs may help to ameliorate an array of pathological mechanisms in the SOD1G93A transgenic mouse model of ALS. On the basis of a meta-analysis of 11 independent studies performed by a consortium of ALS investigators, we propose that transplanted NSCs (both mouse and human) can slow both the onset and the progression of clinical signs and prolong survival in ALS mice, particularly if regions sustaining vital functions such as respiration are rendered chimeric. The beneficial effects of transplanted NSCs seem to be mediated by a number of actions including their ability to produce trophic factors, preserve neuromuscular function, and reduce astrogliosis and inflammation. We conclude that the widespread, pleiotropic, modulatory actions exerted by transplanted NSCs may represent an accessible therapeutic application of stem cells for treating ALS and other untreatable degenerative diseases.
Molecular and Cellular Neuroscience | 2011
Laia Tolosa; Víctor Caraballo-Miralles; Gabriel Olmos; Jerònia Lladó
Besides glutamate excitotoxicity, the neuroinflammatory response is emerging as a relevant contributor to motoneuron loss in amyotrophic lateral sclerosis (ALS). In this regard, high levels of circulating proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) have been shown both in human patients and in animal models of ALS. The aim of this work was to study the effects of TNF-α on glutamate-induced excitotoxicity in spinal cord motoneurons. In rat spinal cord organotypic cultures chronic glutamate excitotoxicity, induced by the glutamate-uptake inhibitor threohydroxyaspartate (THA), resulted in motoneuron loss that was associated with a neuroinflammatory response. In the presence of TNF-α, THA-induced excitotoxic motoneuron death was potentiated. Co-exposure to TNF-α and THA also resulted in down-regulation of the astroglial glutamate transporter 1 (GLT-1) and in increased extracellular glutamate levels, which were prevented by nuclear factor-kappaB (NF-κB) inhibition. Furthermore, TNF-α and THA also cooperated in the induction of oxidative stress in a mechanism involving the NF-κB signalling pathway as well. The inhibition of this pathway abrogated the exacerbation of glutamate-mediated motoneuron death induced by TNF-α. These data link two important pathogenic mechanisms, excitotoxicity and neuroinflammation, suggested to play a role in ALS and, to our knowledge, this is the first time that TNF-α-induced NF-κB activation has been reported to potentiate glutamate excitotoxicity on motononeurons.
Neurobiology of Disease | 2006
Jerònia Lladó; Christine Haenggeli; Andrea C. Pardo; Victor Wong; Leah M. Benson; Carol Coccia; Jeffrey D. Rothstein; Jeremy M. Shefner; Nicholas J. Maragakis
The transgenic mutant superoxide dismutase (SOD1) mice and rats have been important tools in attempting to understand motor neuron pathology and degeneration but the mechanism behind death in this model has not been studied. We studied the electrophysiologic and pathologic properties of the cervical motor neurons and phrenic nerves in mutant SOD1 rats and demonstrated motor neuron loss, progressive reduction of phrenic nerve compound muscle action potential amplitudes, phrenic nerve fiber loss, and diaphragm atrophy suggesting respiratory insufficiency as a significant contributing factor leading to SOD1 rat death. Unlike previous observations suggesting that a dying-back process may be occurring in the mouse model of the disease, we did not observe differences between proximal and distal axon loss in phrenic nerves of SOD1 rats. This may reflect a unique feature of respiratory motor neuron biology or may be related to the relatively rapid course of decline in the rat model when compared with the mouse SOD1 model. Significant motor neuron loss was also noted in the lumbosacral spinal cord with relative sparing of motor neurons in the cranial nuclei. Taken together, these data suggest that respiratory motor neuron loss results in significant electrophysiologic changes and diaphragmatic atrophy. These changes may play a significant role resulting in death of these animals.
Acta Neuropathologica | 2011
Victoria Ayala; Ana Belén Granado-Serrano; Daniel Cacabelos; Alba Naudí; Ekaterina V. Ilieva; Jordi Boada; Víctor Caraballo-Miralles; Jerònia Lladó; Isidro Ferrer; Reinald Pamplona; Manuel Portero-Otin
TDP-43 has been implicated in the pathogenesis of amyotrophic lateral sclerosis and other neurodegenerative diseases. Here we demonstrate, using neuronal and spinal cord organotypic culture models, that chronic excitotoxicity, oxidative stress, proteasome dysfunction and endoplasmic reticulum stress mechanistically induce mislocalization, phosphorylation and aggregation of TDP-43. This is compatible with a lack of function of this protein in the nucleus, specially in motor neurons. The relationship between cell stress and pathological changes of TDP-43 also includes a dysfunction in the survival pathway mediated by mitogen-activated protein kinase/extracellular signal-regulated kinases (ERK1/2). Thus, under stress conditions, neurons and other spinal cord cells showed cytosolic aggregates containing ERK1/2. Moreover, aggregates of abnormal phosphorylated ERK1/2 were also found in the spinal cord in amyotrophic lateral sclerosis (ALS), specifically in motor neurons with abnormal immunoreactive aggregates of phosphorylated TDP-43. These results demonstrate that cellular stressors are key factors in neurodegeneration associated with TDP-43 and disclose the identity of ERK1/2 as novel players in the pathogenesis of ALS.
Glia | 2005
Nicholas J. Maragakis; Mahendra S. Rao; Jerònia Lladó; Victor Wong; Haipeng Xue; Andrea C. Pardo; Joseph Herring; Douglas A. Kerr; Carol Coccia; Jeffrey D. Rothstein
We have examined the expression of glutamate transporters in primary and immortalized glial precursors (GRIPs). We subsequently transduced these cells with the GLT1 glutamate transporter and examined the ability of these cells to protect motor neurons in an organotypic spinal cord culture. We show that glial restricted precursors and GRIP‐derived astrocytes predominantly express glutamate transporters GLAST and GLT1. Oligodendrocyte differentiation of GRIPs results in downregulation of all glutamate transporter subtypes. Having identified these precursor cells as potential vectors for delivering glutamate transporters to regions of interest, we engineered a line of GRIPS that overexpress the glutamate transporter GLT1. These cells (G3 cells) have a nearly fourfold increase in glutamate transporter expression and at least a twofold increase in the Vmax for glutamate transport. To assess whether G3 seeding can protect motor neurons from chronic glutamate neurotoxicity, G3s were seeded onto rat organotypic spinal cord cultures. These cultures have previously been used extensively to understand pathways involved in chronic glutamate neurotoxicity of motor neurons. After G3 seeding, cells integrated into the culture slice and resulted in levels of glutamate transport sufficient to enhance total glutamate uptake. To test whether neuroprotection was related to glutamate transporter overexpression, we isolated GRIPS from the GLT1 null mouse to serve as controls. The seeding of G3s resulted in a reduction of motor neuron cell death. Hence, we believe that these cells may potentially play a role in cell‐based neuroprotection from glutamate excitotoxicity.
Journal of Neuroimmunology | 2008
Margalida Mir; Laia Tolosa; Víctor J. Asensio; Jerònia Lladó; Gabriel Olmos
Proinflammatory cytokines and pathogen components activate microglia to release several substances such as nitric oxide (NO) produced after the induction of type II nitric oxide synthase (iNOS). The present study was designed to elucidate the interaction between the proinflammatory cytokines interferon gamma (IFN-gamma) and tumor necrosis factor alpha (TNF-alpha) on iNOS expression and NO production in microglial cells. In primary mouse microglial cells exposure to IFN-gamma (5 and 10 ng/ml; 48 h) or TNF-alpha (20 ng/ml; 48 h) alone were unable to induce iNOS expression; however, when cells were exposed to both cytokines together, the expression of this enzyme and the NO production in culture media were found significantly increased. In the BV-2 microglial cell line, IFN-gamma and TNF-alpha were shown to cooperate in nuclear factor kappa B (NF-kappa B) activation, an essential transcription factor for iNOS gene transcription. Importantly, IFN-gamma induced NF-kappa B binding to DNA was totally dependent on the endogenous TNF-alpha released via MEK/ERK signalling pathway. Thus, exposure of BV-2 cells to IFN-gamma in the presence of the selective MEK inhibitor U0126 or a neutralizing anti-TNF-alpha antibody significantly reduced IFN-gamma dependent NF-kappa B activation and iNOs expression. In addition, by activating the Jak/STAT pathway IFN-gamma potentiated TNF-alpha induced NF-kappa B binding to DNA and activated additional transcription factors (i.e. IRF-1) known to be essential for iNOs gene expression. The present findings demonstrate that the proinflammatory cytokines IFN-gamma and TNF-alpha have complementary roles on iNOS expression in microglial cells and this might be relevant to understand the molecular mechanisms of microglial activation associated with the pathogenesis of several neuroinflammatory disorders in which increased levels of IFN-gamma and TNF-alpha have been reported.
Frontiers in Cellular Neuroscience | 2013
Jerònia Lladó; Laia Tolosa; Gabriel Olmos
Vascular endothelial growth factor (VEGF), originally described as a factor with a regulatory role in vascular growth and development, it is also known for its direct effects on neuronal cells. The discovery in the past decade that transgenic mice expressing reduced levels of VEGF developed late-onset motoneuron pathology, reminiscent of amyotrophic lateral sclerosis (ALS), opened a new field of research on this disease. VEGF has been shown to protect motoneurons from excitotoxic death, which is a relevant mechanism involved in motoneuron degeneration in ALS. Thus, VEGF delays motoneuron degeneration and increases survival in animal models of ALS. VEGF exerts its anti-excitotoxic effects on motoneurons through molecular mechanisms involving the VEGF receptor-2 resulting in the activation of the PI3-K/Akt signaling pathway, upregulation of GluR2 subunit of AMPA receptors, inhibition of p38MAPK, and induction of the anti-apoptotic molecule Bcl-2. In addition, VEGF acts on astrocytes to reduce astroglial activation and to induce the release of growth factors. The potential use of VEGF as a therapeutic tool in ALS is counteracted by its vascular effects and by its short effective time frame. More studies are needed to assess the optimal isoform, route of administration, and time frame for using VEGF in the treatment of ALS.