Jeronimo R. Maze
Pontifical Catholic University of Chile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeronimo R. Maze.
Nature | 2008
Jeronimo R. Maze; Paul L. Stanwix; Jonathan S. Hodges; Sungkun Hong; Jacob M. Taylor; Paola Cappellaro; Liang Jiang; M. V. Gurudev Dutt; Emre Togan; A. S. Zibrov; Amir Yacoby; Ronald L. Walsworth; Mikhail D. Lukin
Detection of weak magnetic fields with nanoscale spatial resolution is an outstanding problem in the biological and physical sciences. For example, at a distance of 10 nm, the spin of a single electron produces a magnetic field of about 1 μT, and the corresponding field from a single proton is a few nanoteslas. A sensor able to detect such magnetic fields with nanometre spatial resolution would enable powerful applications, ranging from the detection of magnetic resonance signals from individual electron or nuclear spins in complex biological molecules to readout of classical or quantum bits of information encoded in an electron or nuclear spin memory. Here we experimentally demonstrate an approach to such nanoscale magnetic sensing, using coherent manipulation of an individual electronic spin qubit associated with a nitrogen-vacancy impurity in diamond at room temperature. Using an ultra-pure diamond sample, we achieve detection of 3 nT magnetic fields at kilohertz frequencies after 100 s of averaging. In addition, we demonstrate a sensitivity of 0.5 μT Hz-1/2 for a diamond nanocrystal with a diameter of 30 nm.
Science | 2007
M. V. Gurudev Dutt; L. Childress; Liang Jiang; Emre Togan; Jeronimo R. Maze; Fedor Jelezko; A. S. Zibrov; P. R. Hemmer; Mikhail D. Lukin
The key challenge in experimental quantum information science is to identify isolated quantum mechanical systems with long coherence times that can be manipulated and coupled together in a scalable fashion. We describe the coherent manipulation of an individual electron spin and nearby individual nuclear spins to create a controllable quantum register. Using optical and microwave radiation to control an electron spin associated with the nitrogen vacancy (NV) color center in diamond, we demonstrated robust initialization of electron and nuclear spin quantum bits (qubits) and transfer of arbitrary quantum states between them at room temperature. Moreover, nuclear spin qubits could be well isolated from the electron spin, even during optical polarization and measurement of the electronic state. Finally, coherent interactions between individual nuclear spin qubits were observed and their excellent coherence properties were demonstrated. These registers can be used as a basis for scalable, optically coupled quantum information systems.
Nature | 2010
Emre Togan; YunXiang Chu; Alexei Trifonov; Liang Jiang; Jeronimo R. Maze; Lilian Childress; M. V. G. Dutt; Anders S. Sørensen; P. R. Hemmer; A. S. Zibrov; Mikhail D. Lukin
Quantum entanglement is among the most fascinating aspects of quantum theory. Entangled optical photons are now widely used for fundamental tests of quantum mechanics and applications such as quantum cryptography. Several recent experiments demonstrated entanglement of optical photons with trapped ions, atoms and atomic ensembles, which are then used to connect remote long-term memory nodes in distributed quantum networks. Here we realize quantum entanglement between the polarization of a single optical photon and a solid-state qubit associated with the single electronic spin of a nitrogen vacancy centre in diamond. Our experimental entanglement verification uses the quantum eraser technique, and demonstrates that a high degree of control over interactions between a solid-state qubit and the quantum light field can be achieved. The reported entanglement source can be used in studies of fundamental quantum phenomena and provides a key building block for the solid-state realization of quantum optical networks.
Nature Nanotechnology | 2010
Thomas M. Babinec; Birgit Hausmann; Mughees Khan; Yinan Zhang; Jeronimo R. Maze; P. R. Hemmer; Marko Lon ccaron
The development of a robust light source that emits one photon at a time will allow new technologies such as secure communication through quantum cryptography. Devices based on fluorescent dye molecules, quantum dots and carbon nanotubes have been demonstrated, but none has combined a high single-photon flux with stable, room-temperature operation. Luminescent centres in diamond have recently emerged as a stable alternative, and, in the case of nitrogen-vacancy centres, offer spin quantum bits with optical readout. However, these luminescent centres in bulk diamond crystals have the disadvantage of low photon out-coupling. Here, we demonstrate a single-photon source composed of a nitrogen-vacancy centre in a diamond nanowire, which produces ten times greater flux than bulk diamond devices, while using ten times less power. This result enables a new class of devices for photonic and quantum information processing based on nanostructured diamond, and could have a broader impact in nanoelectromechanical systems, sensing and scanning probe microscopy.
Science | 2009
Liang Jiang; Jonathan S. Hodges; Jeronimo R. Maze; Peter Maurer; Jacob M. Taylor; David G. Cory; P. R. Hemmer; Ronald L. Walsworth; Amir Yacoby; A. S. Zibrov; Mikhail D. Lukin
Extending Quantum Memory Quantum information processing and communication relies on the ability to store, retrieve, and manipulate information stored in quantum memories. In most practical instances, however, the stored quantum information is fragile and susceptible to loss during readout. Jiang et al. (p. 267, published online 10 September) used a combination of quantum logic operations on the electronic spin of a nitrogen vacancy center in diamond to control its interactions with a nearby set of proximal nuclear spins of the carbon network. In this setup, the quantum memory of the electron spin could be made more robust. Extending the lifetime and allowing multiple readouts of the quantum memory should prove a useful technique for quantum information processing. Controlled interactions with nearby nuclear spins help improve the quantum memory of a nitrogen vacancy in diamond. Robust measurement of single quantum bits plays a key role in the realization of quantum computation and communication as well as in quantum metrology and sensing. We have implemented a method for the improved readout of single electronic spin qubits in solid-state systems. The method makes use of quantum logic operations on a system consisting of a single electronic spin and several proximal nuclear spin ancillae in order to repetitively readout the state of the electronic spin. Using coherent manipulation of a single nitrogen vacancy center in room-temperature diamond, full quantum control of an electronic-nuclear system consisting of up to three spins was achieved. We took advantage of a single nuclear-spin memory in order to obtain a 10-fold enhancement in the signal amplitude of the electronic spin readout. We also present a two-level, concatenated procedure to improve the readout by use of a pair of nuclear spin ancillae, an important step toward the realization of robust quantum information processors using electronic- and nuclear-spin qubits. Our technique can be used to improve the sensitivity and speed of spin-based nanoscale diamond magnetometers.
New Journal of Physics | 2011
Jeronimo R. Maze; Adam Gali; Emre Togan; Yiwen Chu; Alexei Trifonov; Efthimios Kaxiras; Mikhail D. Lukin
We present a procedure that makes use of group theory to analyze and predict the main properties of the negatively charged nitrogen-vacancy (NV) center in diamond. We focus on the relatively low temperature limit where both the spin–spin and spin–orbit effects are important to consider. We demonstrate that group theory may be used to clarify several aspects of the NV structure, such as ordering of the singlets in the (e2) electronic configuration and the spin–spin and spin–orbit interactions in the (ae) electronic configuration. We also discuss how the optical selection rules and the response of the center to electric field can be used for spin–photon entanglement schemes. Our general formalism is applicable to a broad class of local defects in solids. The present results have important implications for applications in quantum information science and nanomagnetometry.
Physical Review B | 2009
P. Rabl; Paola Cappellaro; M. V. Gurudev Dutt; Liang Jiang; Jeronimo R. Maze; Mikhail D. Lukin
We describe a technique that enables a strong coherent coupling between a single electronic spin qubit associated with a nitrogen-vacancy impurity in diamond and the quantized motion of a magnetized nanomechanical resonator tip. This coupling is achieved via careful preparation of dressed spin states which are highly sensitive to the motion of the resonator but insensitive to perturbations from the nuclear-spin bath. In combination with optical pumping techniques, the coherent exchange between spin and motional excitations enables ground-state cooling and controlled generation of arbitrary quantum superpositions of resonator states. Optical spin readout techniques provide a general measurement toolbox for the resonator with quantum limited precision.
Physical Review B | 2010
Paul L. Stanwix; Linh Pham; Jeronimo R. Maze; D. Le Sage; T.K. Yeung; Paola Cappellaro; P. R. Hemmer; Amir Yacoby; Mikhail D. Lukin; Ronald L. Walsworth
We present an experimental and theoretical study of electronic spin decoherence in ensembles of nitrogen-vacancy (NV) color centers in bulk high-purity diamond at room temperature. Under appropriate conditions, we find ensemble NV spin coherence times
Physical Review B | 2008
Jeronimo R. Maze; Jacob M. Taylor; Mikhail D. Lukin
({T}_{2})
The Astronomical Journal | 2000
Andreas Reisenegger; H. Quintana; Eleazar R. Carrasco; Jeronimo R. Maze
comparable to that of single NV with