Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jerry E. Manning is active.

Publication


Featured researches published by Jerry E. Manning.


Cell | 1977

Sequence arrangement of the rDNA of Drosophila melanogaster

Maria Pellegrini; Jerry E. Manning; Norman Davidson

The sequence arrangement of genes coding for stable rRNA species and of the interspersed spacers on long single strands of rDNA purified from total chromosomal DNA of Drosophila melanogaster has been determined by a study of the structure of rRNA:DNA hybrids which were mounted for electron microscope observation by the gene 32-ethidium bromide technique. One repeat unit contains the following sequences in the order given. First, an 18 S gene of length 2.13 +/- 0.17 kb. Second, an internal transcribed spacer (Spl) of length 1.58 +/- 0.15 kb. A short sequence coding for the 5.8S and perhaps the 2S rRNA species is located within this spacer. Third, the 28S gene with a length of 4.36 +/- 0.23 kb. About 55% of the 28S genes are unbroken or continuous (C genes). However, about 45% of the 28S genes contain an insertion of an additional segment of DNA that is not complementary to rRNA (l genes). The insertion occurs at a reproducible point 2.99 +/- 0.26 kb from the junction with Spl. The insertions are heterogeneous in length and occur in three broad size classes: 1.42 +/- 0.47, 3.97 +/- 0.55, and 6.59 +/- 0.62 kb. Fourth, an external spacer between the 28S gene and the next 18S gene which is presumably mainly nontranscribed and which has a heterogeneous length distribution with a mean length and standard deviation of 5.67 +/- 1.92 kb. Short inverted repeat stems (100-400 nucleotide pairs) occur at the base of the insertion. It is known from other studies that I genes occur only on the X chromosome. The present study shows that the I and C genes on the X chromosomes are approximately randomly assorted. The sequence arrangement on the plasmid pDm103 containing one repeat of rDNA (Glover et al., 1975) has been determined by similar methods. The I gene on this plasmid contains an inverted repeat stem. The occurrence of inverted repeat sequences flanking the insertion supports the speculation that these sequences are translocatable elements similar to procaryotic translocons.


Journal of Immunology | 2004

Antibody Targeting of the CC Chemokine Ligand 5 Results in Diminished Leukocyte Infiltration into the Central Nervous System and Reduced Neurologic Disease in a Viral Model of Multiple Sclerosis

William G. Glass; Michelle J. Hickey; Jenny L. Hardison; Michael T. Liu; Jerry E. Manning; Thomas E. Lane

Intracerebral infection of mice with mouse hepatitis virus, a member of the Coronaviridae family, reproducibly results in an acute encephalomyelitis that progresses to a chronic demyelinating disease. The ensuing neuropathology during the chronic stage of disease is primarily immune mediated and similar to that of the human demyelinating disease multiple sclerosis. Secretion of chemokines within the CNS signals the infiltration of leukocytes, which results in destruction of white matter and neurological impairment. The CC chemokine ligand (CCL)5 is localized in white matter tracts undergoing demyelination, suggesting that this chemokine participates in the pathogenesis of disease by attracting inflammatory cells into the CNS. In this study, we administer a mAb directed against CCL5 to mice with established mouse hepatitis virus-induced demyelination and impaired motor skills. Anti-CCL5 treatment decreased T cell accumulation within the CNS based, in part, on viral Ag specificity, indicating the ability to differentially target select populations of T cells. In addition, administration of anti-CCL5 improved neurological function and significantly (p ≤ 0.005) reduced the severity of demyelination and macrophage accumulation within the CNS. These results demonstrate that the severity of CNS disease can be reduced through the use of a neutralizing mAb directed against CCL5 in a viral model of demyelination.


Journal of Biological Chemistry | 1999

Cloning of a surface membrane glycoprotein specific for the infective form of Trypanosoma cruzi having adhesive properties to laminin

Ricardo J. Giordano; David L. Fouts; Devansu Tewari; Walter Colli; Jerry E. Manning; Maria Júlia M. Alves

Trypomastigotes of Trypanosoma cruzi express a set of surface glycoproteins known, collectively, as Tc-85. A monoclonal antibody to these proteins, named H1A10, inhibits (50–90%) in vitro parasite interiorization into host cells, thus implicating these glycoproteins in the infection process. Two DNA inserts, a genomic DNA fragment and a full-length cDNA encoding the H1A10 epitope, have now been cloned and characterized. Results show that both have high sequence identity with all reported members of the gp85/trans-sialidase gene family, although the H1A10 epitope exists only in the Tc-85 subset of the family. The epitope has been mapped by competition of antibody binding to a Tc-85 recombinant protein with peptides having sequences predicted by the Tc-85 DNA sequence, which contains also putativeN-glycosylation sites and COOH-terminal glycosylphosphatidylinositol anchor insertion sites, as expected, since an N-glycan chain and a glycosylphosphatidylinositol anchor have been characterized previously in the Tc-85 subset. The protein encoded by the full-length cDNA insert binds to cells and in vitro to laminin, but not to gelatin or fibronectin, in a saturable manner. For the first time it was possible to assign a defined ligand to a sequenced glycoprotein belonging to the gp85 family. This fact, together with the reported binding of family members to cell surfaces, reinforces the hypothesis that this family encodes glycoproteins with similar sequences but differing enough as to bind to different ligands and thus forming a family of adhesion glycoproteins enabling the parasite to overcome the barriers interposed by cell membranes, extracellular matrices, and basal laminae.


Molecular and Biochemical Parasitology | 1981

Complexity and content of the DNA and RNA in Trypanosoma cruzi

David E. Lanar; Laura Silven Levy; Jerry E. Manning

The content and sequence complexity of the nuclear DNA and messenger RNA for epimastigotes of Trypanosoma cruzi were determined. From analysis of nuclear DNA reassociation studies and microspectrofluorometric measurements of laser induced fluorescence of cellular DNA, T. cruzi is found to be a diploid organism with a nuclear DNA content of 2.5 x 10(8) nucleotide pairs (2.8 x 10(-13) g) and a kinetoplast DNA content of 4.9 x 10(7) nucleotide pairs (5.4 x 10(-14) g). Reassociation kinetics of nuclear DNA of average length 0.4 kb reveals three kinetic components: a moderately repetitive component with a reiteration frequency of 5.1 x 10(3) present in 9% of the fragments, a lowly repetitive component with a reiteration frequency of 32 present in 51% of the fragments, and a single-copy component present in 23% of the fragments. By saturation hybridization of total polysomal RNA to 3H-labeled single-copy DNA, it was determined that 68% of the single-copy DNA was represented in the epimastigote polysomal RNA. This corresponds to ca. 12 000 different mRNA species. Of these, ca. 9000 are present as poly(A)+-RNA, while the remaining 3000 appear not to be polyadenylated. Kinetic analysis of the poly(A)+-RNA population indicates it is composed of at least three classes of RNAs of different abundancy levels: two sequences which occur ca. 3000 per cell, ca. 750 sequences which occur about 20 times per cell, and ca. 15 500 sequences which occur 1-2 times per cell.


Journal of Virology | 2004

CXC Chemokine Ligand 10 Controls Viral Infection in the Central Nervous System: Evidence for a Role in Innate Immune Response through Recruitment and Activation of Natural Killer Cells

Matthew J. Trifilo; Cynthia Montalto-Morrison; Linda N. Stiles; Kelley R. Hurst; Jenny L. Hardison; Jerry E. Manning; Paul S. Masters; Thomas E. Lane

ABSTRACT How chemokines shape the immune response to viral infection of the central nervous system (CNS) has largely been considered within the context of recruitment and activation of antigen-specific lymphocytes. However, chemokines are expressed early following viral infection, suggesting an important role in coordinating innate immune responses. Herein, we evaluated the contributions of CXC chemokine ligand 10 (CXCL10) in promoting innate defense mechanisms following coronavirus infection of the CNS. Intracerebral infection of RAG1−/− mice with a recombinant CXCL10-expressing murine coronavirus (mouse hepatitis virus) resulted in protection from disease and increased survival that correlated with a significant increase in recruitment and activation of natural killer (NK) cells within the CNS. Accumulation of NK cells resulted in a reduction in viral titers that was dependent on gamma interferon secretion. These results indicate that CXCL10 expression plays a pivotal role in defense following coronavirus infection of the CNS by enhancing innate immune responses.


Infection and Immunity | 2006

The CC Chemokine Receptor 5 Is Important in Control of Parasite Replication and Acute Cardiac Inflammation following Infection with Trypanosoma cruzi

Jenny L. Hardison; Ruth A. Wrightsman; Philip M. Carpenter; William A. Kuziel; Thomas E. Lane; Jerry E. Manning

ABSTRACT Infection of susceptible mice with the Colombiana strain of Trypanosoma cruzi results in an orchestrated expression of chemokines and chemokine receptors within the heart that coincides with parasite burden and cellular infiltration. CC chemokine receptor 5 (CCR5) is prominently expressed during both acute and chronic disease, suggesting a role in regulating leukocyte trafficking and accumulation within the heart following T. cruzi infection. To better understand the functional role of CCR5 and its ligands with regard to both host defense and/or disease, CCR5−/− mice were infected with T. cruzi, and the disease severity was evaluated. Infected CCR5−/− mice develop significantly higher levels of parasitemia (P ≤ 0.05) and cardiac parasitism (P ≤ 0.01) during acute infection that correlated with reduced survival. Further, we show that CCR5 is essential for directing the migration of macrophages and T cells to the heart early in acute infection with T. cruzi. In addition, data are provided demonstrating that CCR5 does not play an essential role in maintaining inflammation in the heart during chronic infection. Collectively, these studies clearly demonstrate that CCR5 contributes to the control of parasite replication and the development of a protective immune response during acute infection but does not ultimately participate in maintaining a chronic inflammatory response within the heart.


Molecular and Biochemical Parasitology | 1991

Nucleotide sequence and transcription of a trypomastigote surface antigen gene of Trypanosoma cruzi

David L. Fouts; Barbara J. Ruef; Peter T. Ridley; Ruth A. Wrightsman; David S. Peterson; Jerry E. Manning

In previous studies we identified a 500-bp segment of the gene, TSA-1, which encodes an 85-kDa trypomastigote-specific surface antigen of the Peru strain of Trypanosoma cruzi. TSA-1 was shown to be located at a telomeric site and to contain a 27-bp tandem repeat unit within the coding region. This repeat unit defines a discrete subset of a multigene family and places the TSA-1 gene within this subset. In this study, we present the complete nucleotide sequence of the TSA-1 gene from the Peru strain. By homology matrix analysis, fragments of two other trypomastigote specific surface antigen genes, pTt34 and SA85-1.1, are shown to have extensive sequence homology with TSA-1 indicating that these genes are members of the same gene family as TSA-1. The TSA-1 subfamily was also found to be active in two other strains of T. cruzi, one of which contains multiple telomeric members and one of which contains a single non-telomeric member, suggesting that transcription is not necessarily dependent on the gene being located at a telomeric site. Also, while some of the sequences found in this gene family are present in 2 size classes of poly(A)+ RNA, others appear to be restricted to only 1 of the 2 RNA classes.


Infection and Immunity | 2006

The Chemokines CXCL9 and CXCL10 Promote a Protective Immune Response but Do Not Contribute to Cardiac Inflammation following Infection with Trypanosoma cruzi

Jenny L. Hardison; Ruth A. Wrightsman; Philip M. Carpenter; Thomas E. Lane; Jerry E. Manning

ABSTRACT The expression of chemokines within the heart during experimental infection of susceptible mice with the Colombiana strain of Trypanosoma cruzi was characterized in an attempt to determine a functional role for these molecules in both host defense and disease. Analysis of chemokine transcripts revealed that CXC chemokine ligand 9 (CXCL9) and CXCL10, as well as CC chemokine ligand 2 (CCL2) and CCL5, were prominently expressed during acute disease, whereas transcripts for CXCL9, CXCL10, and CCL5 remained elevated during chronic infection. Inflammatory macrophages present within the heart were the primary cellular source of these chemokines following T. cruzi infection. Peak chemokine expression levels coincided with increased gamma interferon expression and inflammation within the heart, suggesting a role for these molecules in both host defense and disease. Indeed, simultaneous treatment of T. cruzi-infected mice with neutralizing antibodies specific for CXCL9 and CXCL10 resulted in an increased parasite burden that was sustained out to 50 days p.i. Antibody targeting either CXCL10 or CCL5 did not change either T. cruzi burden within the heart nor attenuate the severity of cardiac inflammation at any time point examined, while targeting CXCL9 in combination with CXCL10 resulted in increased parasite burden. Collectively, these studies imply that CXCL9 and CXCL10 signaling enhances immune responses following parasite infection. However, antibody targeting of CXCL9 and CXCL10, or CXCL10 alone, or CCL5 alone does not directly modulate the inflammatory response within the heart, suggesting that other proinflammatory factors are able to regulate inflammation in this tissue in response to T. cruzi infection.


Journal of Biological Chemistry | 1998

Evidence for Four Distinct Major Protein Components in the Paraflagellar Rod of Trypanosoma cruzi

David L. Fouts; Gabrielle A. Stryker; Kevin S. Gorski; Mark J. Miller; Thanh V. Nguyen; Ruth A. Wrightsman; Jerry E. Manning

The major structural proteins present in the paraflagellar rod of Trypanosoma cruzi migrate on SDS-polyacrylamide gels as two distinct electrophoretic bands. The gene encoding a protein present in the faster migrating band, designated PAR 2, has been identified previously. Here we report the isolation and partial characterization of three genes, designated par 1, par 3, and par 4, that encode proteins present in the two paraflagellar rod protein bands. Peptide-specific polyclonal antibodies and monoclonal antibodies against the four proteins encoded by these genes shows that PAR 1 and PAR 3 are present only in the slower migrating paraflagellar rod band, and that PAR 2 and PAR 4 are present only in the faster migrating band. Analysis of the nucleotide sequence of these genes and the amino acid sequence of the conceptual proteins encoded by them indicates that par 2 shares high sequence similarity with par 3 and both are members of a common gene family, of which par 1 may be a distant member. Analysis of gene copy number and steady-state RNA levels suggest that the close stoichiometric ratio of the four PAR proteins is likely maintained by homeostatic regulation of RNA levels rather than gene dosage.


Developmental Biology | 1982

The selection, expression, and organization of a set of head-specific genes in Drosophila☆

Laura Silven Levy; Ranjan Ganguly; Nivedita Ganguly; Jerry E. Manning

Abstract Comparative screening of a library of cloned Drosophila DNA with polyadenylated mRNA from Drosophila adult head and adult body identified 20 cloned sequences expressed more abundantly in the tissues of the head than in other tissues. Quantitation using a “dot blot” hybridization assay demonstrated that the DNA sequences are expressed on adult head polysomes from 3 to 177 times more abundantly than on body polysomes, and their transcripts represent from 0.05 to 0.66% of the polyadenylated mRNA mass of the head. The steady-state nuclear RNA concentrations of four species were determined to be from 13 to 48 times greater in head nuclei than in body nuclei, an indication that their expression is controlled at least in part at the transcriptional level. The chromosomal locations of all 20 head-specific clones were identified by in situ mapping, and no distinct clustering was observed. However, four of the clones were shown by Southern and Northern blot analysis to contain multiple RNA coding sequences. The genes in these tightly clustered sets were observed to be expressed simultaneously in some cases and differently in others.

Collaboration


Dive into the Jerry E. Manning's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David L. Fouts

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John C. Lucchesi

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Devansu Tewari

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark J. Miller

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Chris A. Beard

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge