Jerry J. Leonard
University of Alberta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jerry J. Leonard.
Bioresource Technology | 2009
Kim Stanford; Xiying Hao; Shanwei Xu; T. A. McAllister; F. J. Larney; Jerry J. Leonard
As residual bones in mortality compost negatively impact subsequent tillage, two studies were performed. For the first study, windrows of mature cattle or calves were placed on a base of barley straw and covered with beef manure. Windrows were divided into two sections and turned at 3-month intervals. Approximately 5000 kg of finished compost per windrow was passed through a 6mm trommel screen, with bones collected and weighed. Bone weight was 0.66% of mature cattle compost and 0.38% of calf compost on a dry matter basis, but did not differ after adjustment for weights of compost ingredients. In a subsequent study, four windrows were constructed containing mortalities, straw and beef manure (STATC) or straw, manure and slaughter waste (STATW). Also, straw, beef manure and slaughter waste was added to an 850 L rolling drum composter (DRUMW). Fresh bovine long-bones from calves were collected, weighed and embedded in the compost. Bones were retrieved and weighed when windrows were turned, or with DRUMW, after 8 weeks. Temperatures achieved followed the order STATW>STATC>DRUMW (p<0.05). Rate of bone disappearance followed a pattern identical to temperature, with the weight of bones in STATW declining by 53.7% during 7 weeks of composting. For STATC, temperatures were uniform over three composting periods, but bone disappearance was improved (p<0.05) when compost dry matter was lower (46%), as compared to 58%. Using a ratio of five parts manure to one part mortalities, results of this study demonstrated that residual bone was <1% of cured cattle compost and may be reduced by maintaining a high compost temperature and moisture content.
Environmental Science & Technology | 2014
Shanwei Xu; Tim Reuter; Brandon H. Gilroyed; Gordon Mitchell; Luke M. Price; Sandor Dudas; Shannon L. Braithwaite; Catherine Graham; Stefanie Czub; Jerry J. Leonard; Aru Balachandran; Norman F. Neumann; Miodrag Belosevic; Tim A. McAllister
Composting may serve as a practical and economical means of disposing of specified risk materials (SRM) or animal mortalities potentially infected with prion diseases (transmissible spongiform encephalopathies, TSE). Our study investigated the degradation of prions associated with scrapie (PrP(263K)), chronic waste disease (PrP(CWD)), and bovine spongiform encephalopathy (PrP(BSE)) in lab-scale composters and PrP(263K) in field-scale compost piles. Western blotting (WB) indicated that PrP(263K), PrP(CWD), and PrP(BSE) were reduced by at least 2 log10, 1-2 log10, and 1 log10 after 28 days of lab-scale composting, respectively. Further analysis using protein misfolding cyclic amplification (PMCA) confirmed a reduction of 2 log10 in PrP(263K) and 3 log10 in PrP(CWD). Enrichment for proteolytic microorganisms through the addition of feather keratin to compost enhanced degradation of PrP(263K) and PrP(CWD). For field-scale composting, stainless steel beads coated with PrP(263K) were exposed to compost conditions and removed periodically for bioassays in Syrian hamsters. After 230 days of composting, only one in five hamsters succumbed to TSE disease, suggesting at least a 4.8 log10 reduction in PrP(263K) infectivity. Our findings show that composting reduces PrP(TSE), resulting in one 50% infectious dose (ID50) remaining in every 5600 kg of final compost for land application. With these considerations, composting may be a viable method for SRM disposal.
Bioresource Technology | 2009
Shouhai Yu; O. Grant Clark; Jerry J. Leonard
The influence of free air space (FAS) on passively aerated composting has been reported, but the quantitative relationship between FAS and the microbial kinetics in passively aerated compost has not been investigated. This relationship was studied by composting dairy manure and straw in an enclosed, passively aerated, cylindrical vessel. Based on this experimental system, conceptual and numerical models were developed in which the compost bed was considered to consist of layered elements, each being physically and chemically homogeneous. The microbial activity in each layer was represented in order to predict oxygen and substrate consumption and the release of water and heat. Convective transport of air, moisture, and heat through the layers was represented. Microbial growth and substrate consumption rates were described using modified first-order kinetics for each of the mesophilic and thermophilic temperature regimes. The values of the microbial kinetic parameters were adjusted for each layer based on an innovative, non-linear, statistical analysis of temperature histories recorded at different layers in the compost bed during three treatments (i.e., FAS values of 0.45, 0.52, and 0.65). Microbial kinetic rate constants were found to follow a sigmoid relationship with FAS, with correlation coefficients (R(2)) of 0.97 for the mesophilic stage and 0.96 for the thermophilic stage. Temperature histories and airflow measurements from a fourth treatment (FAS value of 0.57) were used as an independent check of the models performance. Simulation results indicate that the model could predict the general trend of temperature development. A plot of the residuals shows that the model is biased, however, possibly because many parameters in the model were not measured directly but instead were estimated from literature. The result from this study demonstrates a new method for describing the relationship between microbial kinetics (k(max)) and substrate FAS, which could be used to improve the design, optimization, and management of passively aerated composting facilities.
Waste Management | 2013
Shanwei Xu; Tim Reuter; Brandon H. Gilroyed; Lisa Tymensen; Yongxin Hao; Xiying Hao; Miodrag Belosevic; Jerry J. Leonard; Tim A. McAllister
Provided that infectious prions (PrP(Sc)) are inactivated, composting of specified risk material (SRM) may be a viable alternative to rendering and landfilling. In this study, bacterial and fungal communities as well as greenhouse gas emissions associated with the degradation of SRM were examined in laboratory composters over two 14 day composting cycles. Chicken feathers were mixed into compost to enrich for microbial communities involved in the degradation of keratin and other recalcitrant proteins such as prions. Feathers altered the composition of bacterial and fungal communities primarily during the first cycle. The bacterial genera Saccharomonospora, Thermobifida, Thermoactinomycetaceae, Thiohalospira, Pseudomonas, Actinomadura, and Enterobacter, and the fungal genera Dothideomycetes, Cladosporium, Chaetomium, and Trichaptum were identified as candidates involved in SRM degradation. Feathers increased (P<0.05) headspace concentrations of CH4 primarily during the early stages of the first cycle and N2O during the second. Although inclusion of feathers in compost increases greenhouse gas emissions, it may promote the establishment of microbial communities that are more adept at degrading SRM and recalcitrant proteins such as keratin and PrP(Sc).
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2013
Shanwei Xu; Tim Reuter; Brandon H. Gilroyed; Sandor Dudas; Catherine Graham; Norman F. Neumann; Aru Balachandran; Stefanie Czub; Miodrag Belosevic; Jerry J. Leonard; Tim A. McAllister
Composting may be a viable alternative to rendering and land filling for the disposal of specified risk material (SRM) provided that infectious prion proteins (PrPTSE) are inactivated. This study investigated the degradation of SRM and the fate of scrapie prions (PrPSc) over 28 days in laboratory-scale composters, with and without feathers in the compost matrices. Compost was mixed at day 14 to generate a second heating cycle, with temperatures exceeding 65°C in the first cycle and 50°C in the second cycle. Approximately 63% and 77% of SRM was degraded after the first and second cycles, respectively. Inclusion of feathers in the compost matrices did not alter compost properties during composting other than increasing (P < 0.05) total nitrogen and reducing (P < 0.05) the C/N ratio. However, addition of feathers enhanced (P < 0.05) SRM degradation by 10% upon completion of experiment. Scrapie brain homogenates were spiked into manure at the start of composting and extracted using sodium dodecyl sulphate followed by detection using Western blotting (WB). Prior to composting, PrPSc was detectable in manure with 1–2 log10 sensitivity, but was not observable after 14 or 28 days of composting. This may have been due to either biological degradation of PrPSc or the formation of complexes with compost components that precluded its detection.
2006 CSBE/SCGAB, Edmonton, AB Canada, July 16-19, 2006 | 2006
Shouhai Yu; O. Grant Clark; Jerry J. Leonard
Abstract: Passive aeration systems are more economical than active aeration systems and deliver similar performance, but mathematical descriptions of the process are inadequate for use in its design or optimization. Therefore, a practical analytical model of airflow development in passively aerated compost was developed. The model relates the physical characteristics and temperature of the compost with the predicted passive, convective air flow. The effect of compaction on the permeability of the compost was considered in the application of the model. The model was verified using temperature time series data from a passively aerated composting experiment as inputs, and the calculated results were not significantly different from the measured values (p = 0.97).
Bioresource Technology | 2006
Yi Liang; Jerry J. Leonard; J.J.R. Feddes; W.B. McGill
Archive | 2000
Qu Guoliang; John R. Feddes; Richard Nigel Coleman; William W. Armstrong; Jerry J. Leonard
Water Science and Technology | 2001
I. Edeogu; J. Feddes; R. Coleman; Jerry J. Leonard
Bioresource Technology | 2008
Shouhai Yu; O. Grant Clark; Jerry J. Leonard