Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jerry L. Clayton is active.

Publication


Featured researches published by Jerry L. Clayton.


International Journal of Coal Geology | 1998

Geochemistry of coalbed gas - a review

Jerry L. Clayton

Coals are both sources and reservoirs of large amounts of gas that has received increasing attention in recent years as a largely untapped potential energy resource. Coal mining operations, such as ventilation of coalbed gas from underground mines, release coalbed CH4 into the atmosphere, an important greenhouse gas whose concentration in the atmosphere is increasing. Because of these energy and environmental issues, increased research attention has been focused on the geochemistry of coalbed gas in recent years. This paper presents a summary review of the main aspects of coalbed gas geochemistry and current research advances.


Geochimica et Cosmochimica Acta | 1978

Subaerial weathering of sedimentary organic matter

Jerry L. Clayton; Paul J. Swetland

Abstract Small diameter core samples were taken from outcrops of the Permian Phosphoria Formation and the Cretaceous Pierre Shale of the Western United States to determine the effects of weathering on organic matter in shale outcrops. While the Pierre Shale core showed no evidence of weathering, the Phosphoria Formation showed significant reduction of overall organic content and pronounced changes in organic composition over the near-surface interval of the core. Total organic carbon is lower by as much as 60% over the upper 2 ft of the core. Chloroform-soluble organic matter and total hydrocarbon (C 15+ ) concentrations are 50% lower over this same interval. The ratio of saturated to aromatic hydrocarbons decreases steadily with core depth over the upper 2.6 ft of the core. Aromatic hydrocarbons are enriched in the stable carbon-13 isotope by an average of 1.7%. over this same interval. Shallow core samples also show a loss of n -paraffins relative to branched/cyclic compounds in the saturated C 15+ fraction. Although the extent of weathering is variable, certain characteristic effects are recognizable and can be applied to the interpretation of outcrop data in organic geochemical studies.


Chemical Geology | 2002

Assessment of hydrocarbon source rock potential of Polish bituminous coals and carbonaceous shales

Maciej J. Kotarba; Jerry L. Clayton; Dudley D. Rice; Marian Wagner

Abstract We analyzed 40 coal samples and 45 carbonaceous shale samples of varying thermal maturity (vitrinite reflectance 0.59% to 4.28%) from the Upper Carboniferous coal-bearing strata of the Upper Silesian, Lower Silesian, and Lublin basins, Poland, to evaluate their potential for generation and expulsion of gaseous and liquid hydrocarbons. We evaluated source rock potential based on Rock-Eval pyrolysis yield, elemental composition (atomic H/C and O/C), and solvent extraction yields of bitumen. An attempt was made to relate maceral composition to these source rock parameters and to composition of the organic matter and likely biological precursors. A few carbonaceous shale samples contain sufficient generation potential (pyrolysis assay and elemental composition) to be considered potential source rocks, although the extractable hydrocarbon and bitumen yields are lower than those reported in previous studies for effective Type III source rocks. Most samples analysed contain insufficient capacity for generation of hydrocarbons to reach thresholds required for expulsion (primary migration) to occur. In view of these findings, it is improbable that any of the coals or carbonaceous shales at the sites sampled in our study would be capable of expelling commercial amounts of oil. Inasmuch as a few samples contained sufficient generation capacity to be considered potential source rocks, it is possible that some locations or stratigraphic zones within the coals and shales could have favourable potential, but could not be clearly delimited with the number of samples analysed in our study. Because of their high heteroatomic content and high amount of asphaltenes, the bitumens contained in the coals are less capable of generating hydrocarbons even under optimal thermal conditions than their counterpart bitumens in the shales which have a lower heteroatomic content.


Organic Geochemistry | 1986

Temperature effects on kerogen and on molecular and isotopic composition of organic matter in Pierre Shale near an igneous dike

Jerry L. Clayton; Neely H. Bostick

Abstract A suite of siltstone samples from the Upper Cretaceous Pierre Shale from the contact zone of a 130-cm thick igneous dike near Wolcott, Colorado, U.S.A., was taken from the contact to 170 cm from the dike to study the effects of temperature on the organic matter. The sampled bedding interval was about 10 cm thick, so variation in lithology and type of organic matter is minimal. Vitrinite reflectance values ( R 0 ) increase from 0.4 far from the dike, to 3.3% near the dike contact. Geochemical measurements show systematic thermal effects analogous to those often observed for catagenesis and metagenesis in the depth range of 1–4 km within a sedimentary basin. The H/C ratio of kerogen and the hydrogen index (Rock-Eval) decrease most rapidly in the 0.6–1.7% R 0 range, in which the transformation ratio (Rock-Eval) increases from 0.1 to 0.3. Based on extraction of C 15+ compounds, the main increase of hydrocarbons and total extractable organic matter occurs between 0.6 and 1.0% reflectance. The saturated/aromatic hydrocarbon ratio increases almost twofold in this range of maturity. However, the pristane/phytane ratio is essentially constant through the hydrocarbon generation zone but decreases slightly at high levels of thermal alteration ( R 0 > 1.2%). The δ 13 C values for aromatic and saturated hydrocarbons are about −27 and −29‰, respectively, and are constant to about 1.0% R 0 , then both become heavier by about 2‰ at higher R 0 values.


Organic Geochemistry | 1990

Origin and migration of hydrocarbon gases and carbon dioxide, Békés Basin, southeastern Hungary

Jerry L. Clayton; C.W Spencer; I Koncz; A Szalay

The Bekes Basin is a sub-basin within the Pannonian Basin, containing about 7000 m of post-Cretaceous sedimentary rocks. Natural gases are produced from reservoirs (Precambrian to Tertiary in age) located on structural highs around the margins of the basin. Gas composition and stable carbon isotopic data indicate that most of the flammable gases were derived from humic kerogen contained in source rocks located in the deep basin. The depth of gas generation and vertical migration distances were estimated using quantitative source rock maturity-carbon isotope relationships for methane compared to known Neogene source rock maturity-depth relationships in the basin. These calculations indicate that as much as 3500 m of vertical migration has occured in some cases. Isotopically heavy (> − 7 >0) CO2 is the predominant species present in some shallow reservoirs located on basin-margin structural highs and has probably been derived via long-distance vertical and lateral migration from thermal decompositon of carbonate minerals in Mesozoic and older rocks in the deepest parts of the basin. A few shallow reservoirs (< 2000m) contain isotopically light (−50 to −60%0) methane with only minor amounts of C2+ homologs (< 3% v/v). This methane is probably mostly microbial in origin. Above-normal pressures, occuring at depths greater than 1800 m, are believed to be the principal driving force for lateral and vertical gas migration. These pressures are caused in part by active hydrocarbon generation, undercompaction, and thermal decomposition of carbonates.


Organic Geochemistry | 1981

Organic geochemistry of the 9.6 km Bertha Rogers No. 1. well, Oklahoma

Leigh C. Price; Jerry L. Clayton; Linda L. Rumen

Abstract Organic geochemical analyses of fine-grained rocks from the 9.590 km Bertha Rogers No. 1 well have been carried out: total organic carbon, Soxhlet extraction and silica gel chromatography, C15+ saturated and aromatic hydrocarbon gas chromatography and mass spectrometry, pyrolysis, kerogen analysis, X-ray diffraction and visual kerogen analysis. Rocks ranged in age from Permian to Ordovician; the well has an estimated bottom hole temperature of 225°C. Some data from this study are inconsistent with conventional theories concerning the generation and thermal destruction of hydrocarbons. For example, appreciable amounts of C15+ gas-condensate-like hydrocarbons are present in very old rocks currently at temperatures where current theory predicts that only methane and graphite should remain. Also, substantial amounts of pyrolyzable C15+ hydrocarbons remain on the kerogen in these deeply buried Paleozoic rocks. This suggests, at least in somes cases, that temperatures much higher than those predicted by current theory are required for generation and thermal destruction of hydrocarbons. The data from this well also suggest that original composition of organic matter and environment of deposition may have a much stronger influence on the organic geochemical characteristics of fine-grained sediments than has previously been ascribed to them. The results from this well, from other deep hot wells in which temperatures exceed 200°C, and from laboratory experiments, suggest that some of the basic concepts of the generation and maturation of petroleum hydrocarbons may be in error and perhaps should be reexamined.


International Journal of Coal Geology | 1989

Characterization of coal-derived hydrocarbons and source-rock potential of coal beds, San Juan Basin, New Mexico and Colorado, U.S.A.

Dudley D. Rice; Jerry L. Clayton; Mark J. Pawlewicz

Coal beds are considered to be a major source of nonassociated gas in the Rocky Mountain basins of the United States. In the San Juan basin of northwestern New Mexico and southwestern Colorado, significant quantities of natural gas are being produced from coal beds of the Upper Cretaceous Fruitland Formation and from adjacent sandstone reservoirs. Analysis of gas samples from the various gas-producing intervals provided a means of determining their origin and of evaluating coal beds as source rocks. The rank of coal beds in the Fruitland Formation in the central part of the San Juan basin, where major gas production occurs, increases to the northeast and ranges from high-volatile B bituminous coal to medium-volatile bituminous coal (Rm values range from 0.70 to 1.45%). On the basis of chemical, isotopic and coal-rank data, the gases are interpreted to be thermogenic. Gases from the coal beds show little isotopic variation (δ13C1 values range −43.6 to −40.5 ppt), are chemically dry (C1/C1–5 values are > 0.99), and contain significant amounts of CO2 (as much as 6%). These gases are interpreted to have resulted from devolatilization of the humic-type bituminous coal that is composed mainly of vitrinite. The primary products of this process are CH4, CO2 and H2O. The coal-generated, methane-rich gas is usually contained in the coal beds of the Fruitland Formation, and has not been expelled and has not migrated into the adjacent sandstone reservoirs. In addition, the coal-bed reservoirs produce a distinctive bicarbonate-type connate water and have higher reservoir pressures than adjacent sandstones. The combination of these factors indicates that coal beds are a closed reservoir system created by the gases, waters, and associated pressures in the micropore coal structure. In contrast, gases produced from overlying sandstones in the Fruitland Formation and underlying Pictured Cliffs Sandstone have a wider range of isotopic values (δ13C1 values range from −43.5 to −38.5 ppt), are chemically wetter (C1/C1–5 values range from 0.85 to 0.95), and contain less CO2 (< 2%). These gases are interpreted to have been derived from type III kerogen dispersed in marine shales of the underlying Lewis Shale and nonmarine shales of the Fruitland Formation. In the underlying Upper Cretaceous Dakota Sandstone and Tocito Sandstone Lentil of the Mancos Shale, another gas type is produced. This gas is associated with oil at intermediate stages of thermal maturity and is isotopically lighter and chemically wetter at the intermediate stage of thermal maturity as compared with gases derived from dispersed type III kerogen and coal; this gas type is interpreted to have been generated from type II kerogen. Organic matter contained in coal beds and carbonaceous shales of the Fruitland Formation has hydrogen indexes from Rock-Eval pyrolysis between 100 and 350, and atomic H:C ratios between 0.8 and 1.2. Oxygen indexes and atomic O:C values are less than 24 and 0.3, respectively. Extractable hydrocarbon yields are as high as 7,000 ppm. These values indicate that the coal beds and carbonaceous shales have good potential for the generation of liquid hydrocarbons. Voids in the coal filled with a fluorescent material that is probably bitumen is evidence that liquid hydrocarbon generation has taken place. Preliminary oil-source rock correlations based on gas chromatography and stable carbon isotope ratios of C15+ hydrocarbons indicate that the coals and (or) carbonaceous shales in the Fruitland Formation may be the source of minor amounts of condensate produced from the coal beds at relatively low levelsof thermal maturity (Rm=0.7).


International Journal of Coal Geology | 2003

A stable carbon isotope and biological marker study of Polish bituminous coals and carbonaceous shales

Maciej J. Kotarba; Jerry L. Clayton

Abstract Biological marker and carbon isotopic compositions of coals and carbonaceous shales from the Upper Carboniferous strata of the Upper Silesian (USCB), Lower Silesian (LSCB), and Lublin (LCB) coal basins were determined to assess depositional conditions and sources of the organic matter. n -Alkane, sterane, and isoprenoid distribution, and carbon isotope ratios are consistent with an origin from higher plants. In some cases, pristane/phytane (Pr/Ph) ratios of carbonaceous shales (roof and floor shales) are 29 stereoisomers, typical, but not conclusive, of higher plant origin. Carbonaceous shales exhibit a wider range of sterane composition, suggesting local, significant input of algal organic matter. Significant amounts of benzohopanes and gammacerane are present in some coals. Although benzohopanes are present at least in small amounts in samples from many different environments, they have been reported to occur most commonly in marine environments. The present study seems to provide the first example where benzohopanes have been reported in significant amounts in terrestrial organic matter. Gammacerane is abundant in rocks or sediments deposited in carbonate or highly saline marine environments. The finding of high gammacerane concentrations in the coals expands the depositional settings in which it has been observed and questions its utility as an independent indicator of hypersaline carbonate environments. Stable carbon isotope composition of coals, and type III kerogen in carbonaceous shales as well as correlation of stable carbon isotope composition of saturated and aromatic hydrocarbons in carbonaceous shales from both the USCB and the LSCB indicate terrigenous origin. Bitumens are always co-genetic with associated coals and kerogens. Isotopic data reveal that Sofers genetic classification of oils is not applicable to organic matter in coals.


Organic Geochemistry | 1991

Oil-generating coals of the San Juan Basin, New Mexico and Colorado, U.S.A.

Jerry L. Clayton; D.D. Rice; G.E. Michael

Abstract Coal beds of the Upper Cretaceous Fruitland Formation in the San Juan Basin of northwestern New Mexico and southwestern Colorado have significant liquid hydrocarbon generation potential as indicated by typical Rock-Eval Hydrogen Indexes in the range of 200–400 mg hydrocarbon/g organic carbon (type II and III organic matter). Small, non-commercial quantities of oil have been produced from the coal beds at several locations. The oils are characterized by high pristane/phytane (ca 4) and pristane/n-C17 ratios (ca 1.2), abundant C21+ alkanes in the C10+ fraction with a slight predominance of odd carbon-numbered n-alkanes, abundant branched-chain alkanes in the C15+ region, and a predominance of methylcyclohexane in the C4-C10 fraction. The oils are indigenous to the Fruitland Formation coals and probably migrated at thermal maturities corresponding to vitrinite reflectance values in the range 0.7–0.8%. Although the oils found to date are not present in commercial amounts, these findings illustrate the potential of some coals to generate and expel oil under conditions of moderate thermal heating.


Organic Geochemistry | 1998

2,3,6-/3,4,5-Trimethyl substituted diaryl carotenoid derivatives (Chlorobiaceae) in petroleums of the Belarussian Pripyat River Basin

David J. Clifford; Jerry L. Clayton; Jaap S. Sinninghe Damsté

Degradation products of the 2,3,6-/3,4,5-trimethyl substituted analog of isorenieratene were characterized in Belarussian petroleums. Devonian oils of low maturity were found to contain high concentrations (e.g., 35 mg/g) of C40 diaryl isoprenoids (2,3,6-/3,4,5-trimethyl substitution) along with an abundance of maturation-related compounds. A maturation scheme for diaryl carotenoid (2,3,6-/3,4,5-trimethyl substitution) precursors was proposed. Diaryl isoprenoids and aryl isoprenoid (2,3,6- and 3,4,5-trimethyl substitutions) contents were found to decrease as a function of maturity. Maturity parameters based on (i) the ratio of two specific C15 aryl isoprenoids and (ii) the ratio of C15 (2,3,6) aryl isoprenoids to C40 diaryl isoprenoids (2,3,6-/3,4,5) were proposed.

Collaboration


Dive into the Jerry L. Clayton's collaboration.

Top Co-Authors

Avatar

Paul J. Swetland

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Dudley D. Rice

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Robert T. Ryder

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Leigh C. Price

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Linda L. Rumen

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Paul G. Lillis

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Maciej J. Kotarba

AGH University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

C.W Spencer

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

D.D. Rice

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

David J. Clifford

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge