Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jerry L. Nadler is active.

Publication


Featured researches published by Jerry L. Nadler.


Hypertension | 1993

Magnesium deficiency produces insulin resistance and increased thromboxane synthesis.

Jerry L. Nadler; T. Buchanan; Rama Natarajan; I. Antonipillai; R. Bergman; R. Rude

Evidence suggests that magnesium deficiency may play an important role in cardiovascular disease. In this study, we evaluated the effects of a magnesium infusion and dietary-induced isolated magnesium deficiency on the production of thromboxane and on angiotensin II-mediated aldosterone synthesis in normal human subjects. Because insulin resistance may be associated with altered blood pressure, we also measured insulin sensitivity using an intravenous glucose tolerance test with minimal model analysis in six subjects. The magnesium infusion reduced urinary thromboxane concentration and angiotensin II-induced plasma aldosterone levels. The low magnesium diet reduced both serum magnesium and intracellular free magnesium in red blood cells as determined by nuclear magnetic resonance (186 +/- 10 [SEM] to 127 +/- 9 mM, p < 0.01). Urinary thromboxane concentration measured by radioimmunoassay increased after magnesium deficiency. Similarly, angiotensin II-induced plasma aldosterone concentration increased after magnesium deficiency. Analysis showed that all subjects studied had a decrease in insulin sensitivity after magnesium deficiency (3.69 +/- 0.6 to 2.75 +/- 0.5 min-1 per microunit per milliliter x 10(-4), p < 0.03). We conclude that dietary-induced magnesium deficiency 1) increases thromboxane urinary concentration and 2) enhances angiotensin-induced aldosterone synthesis. These effects are associated with a decrease in insulin action, suggesting that magnesium deficiency may be a common factor associated with insulin resistance and vascular disease.


Diabetes | 1994

Evidence That Glucose Increases Monocyte Binding to Human Aortic Endothelial Cells

Jeong A. Kim; Judith A. Berliner; Rama Natarajan; Jerry L. Nadler

The rate of atherosclerosis is accelerated in humans with diabetes. The adhesion of monocytes to the vascular endothelium is a key event in the development of atherosclerosis. Alloxan (ALX)-induced diabetes in rabbits causes leukocyte accumulation on the arterial surface. However, the effect of glucose exposure on monocyte binding is not understood. We evaluated the effect of chronic elevated glucose on human monocyte binding to human aortic endothelial cells (HAEC) in culture. Monocyte binding to HAEC was significantly increased by chronic incubation of HAEC in high glucose for 7–10 days (CH-HG; 25 mM) compared with cells cultured for the same time in normal glucose (5.5 mM; CH-HG, 188 ± 10 cells/field vs. normal glucose, 111 ± 7; P < 0.0005). Use of mannitol at a concentration to stimulate the hyperosmolar effects of glucose did not significantly alter monocyte binding. Acute 20-min exposure of HAEC to high glucose did not alter monocyte binding. The adherence of HL-60 cells, a neutrophil-like cell line, or human neutrophils was not induced by CH-HG culture. High glucose–induced monocyte binding was not associated with induction of the major endothelial cell adhesion molecules, including E-selectin, vascular cell adhesion molecule 1, and intercellular adhesion molecule 1 (ICAM-1). A monoclonal antibody TS1–18 to the β2 integrin component that is involved in binding to ICAM-1 on endothelial cells significantly reduced monocyte binding, whereas anti-VLA-4 antibody was not effective. These results suggest that hyperglycemia can accelerate the rate of atherosclerosis in diabetics by increasing monocyte binding to the endothelium.


Journal of Biological Chemistry | 2004

12/15-Lipoxygenase Activity Mediates Inflammatory Monocyte/Endothelial Interactions and Atherosclerosis in Vivo

Kelly B. Reilly; Suseela Srinivasan; Melissa E. Hatley; Mary Kim Patricia; Joanne Lannigan; David T. Bolick; George Vandenhoff; Hong Pei; Rama Natarajan; Jerry L. Nadler; Catherine C. Hedrick

We have shown that the 12/15-lipoxygenase (12/15-LO) product 12S-hydroxyeicosatetraenoic acid increases monocyte adhesion to human endothelial cells (EC) in vitro. Recent studies have implicated 12/15-LO in mediating atherosclerosis in mice. We generated transgenic mice on a C57BL/6J (B6) background that modestly overexpressed the murine 12/15-LO gene (designated LOTG). LOTG mice had 2.5-fold elevations in levels of 12S-hydroxyeicosatetraenoic acid and a 2-fold increase in expression of 12/15-LO protein in vivo. These mice developed spontaneous aortic fatty streak lesions on a chow diet. Thus, we examined effects of 12/15-LO expression on early events leading to atherosclerosis in these mice. We found that, under basal unstimulated conditions, LOTG EC bound more monocytes than B6 control EC (18 ± 2 versus 7 ± 1 monocytes/field, respectively; p < 0.0001). Inhibition of 12/15-LO activity in LOTG EC using a 12/15-LO ribozyme completely blocked monocyte adhesion in LOTG mice. Thus, 12/15-LO activity is required for monocyte/EC adhesion in the vessel wall. Expression of ICAM-1 in aortic endothelia of LOTG mice was increased severalfold. VCAM-1 expression was not changed. In a series of blocking studies, antibodies to α4 and β2 integrins in WEHI monocytes blocked monocyte adhesion to both LOTG and B6 control EC. Inhibition of ICAM-1, VCAM-1, and connecting segment-1 fibronectin in EC significantly reduced adhesion of WEHI monocytes to LOTG EC. In summary, these data indicate that EC from LOTG mice are “pre-activated” to bind monocytes. Monocyte adhesion in LOTG mice is mediated through β2 integrin and ICAM-1 interactions as well as through VLA-4 and connecting segment-1 fibronectin/VCAM-1 interactions. Thus, 12/15-LO mediates monocyte/EC interactions in the vessel wall in atherogenesis at least in part through molecular regulation of expression of endothelial adhesion molecules.


Journal of Clinical Investigation | 1999

Resistance to type 1 diabetes induction in 12-lipoxygenase knockout mice

David Bleich; Songyuan Chen; Brian Zipser; Duxin Sun; Colin D. Funk; Jerry L. Nadler

Leukocyte 12-lipoxygenase (12-LO) gene expression in pancreatic beta cells is upregulated by cytotoxic cytokines like IL-1beta. Recent studies have demonstrated that 12-LO inhibitors can prevent glutamate-induced neuronal cell death when intracellular glutathione stores are depleted. Therefore, 12-LO pathway inhibition may prevent beta-cell cytotoxicity. To evaluate the role of 12-LO gene expression in immune-mediated islet destruction, we used 12-LO knockout (12-LO KO) mice. Male homozygous 12-LO KO mice and control C57BL/6 mice received 5 consecutive daily injections of low-dose streptozotocin to induce immune-mediated diabetes. Fasting serum glucose and insulin levels were measured at 7-day intervals, and the mice were followed up for 28 days. 12-LO KO mice were highly resistant to diabetes development compared with control mice and had higher serum insulin levels on day 28. Isolated pancreatic islets were treated with IL-1beta, TNF-alpha, and IFN-gamma for 18 hours. Glucose-stimulated insulin secretion in cytokine-treated islets from C57/BL6 mice decreased 54% from that of untreated islets. In marked contrast, the same cytokine mix led to only a 26% decrease in islets from 12-LO KO mice. Furthermore, cytokine-induced 12-hydroxyeicosatetraenoic acid (12-HETE) production was absent in 12-LO KO islets but present in C57/BL6 islets. Isolated peritoneal macrophages were stimulated for 48 hours with IFN-gamma + LPS and compared for nitrate/nitrite generation. 12-LO KO macrophages generated 50% less nitrate/nitrite when compared with C57BL/6 macrophages. In summary, elimination of leukocyte 12-LO in mice ameliorates low dose streptozotocin-induced diabetes by increasing islet resistance to cytokines and decreasing macrophage production of nitric oxide.


Biochemical and Biophysical Research Communications | 1992

Vascular smooth muscle cells exhibit increased growth in response to elevated glucose

Rama Natarajan; Noe Gonzales; L. Xu; Jerry L. Nadler

Diabetes mellitus is associated with an increased risk of cardiovascular disease. In order to elucidate the association between hyperglycemia and vascular complications, the growth patterns of vascular smooth muscle cells were studied under high glucose conditions. We examined the effect of culturing porcine aortic smooth muscle cells (PVSMC) in high glucose (25 mM, HG) on total cell protein, cell volume, DNA synthesis and cell number. We observed that cells cultured in HG had higher total cell protein content which was associated with increased cell volume as compared to the cells cultured under normoglycemic conditions (5.5 mM glucose, NG). PVSMC cultured in HG also had 1.4 fold increased growth rate and a greater fetal calf serum-induced DNA synthesis rate compared to cells cultured in NG. These observations suggest for the first time that elevated glucose could lead to both hypertrophic and hyperplastic effects in PVSMC. We also examined protein kinase C (PKC) activities as well as the cellular levels of the 12-lipoxygenase product, 12-hydroxyeicosatetraenoic acid (12-HETE) in NG and HG as possible mechanisms for the enhanced growth effects in HG. The results show that PVSMC cultured in HG have increased PKC activity as well as increased levels of 12-HETE. Therefore hyperglycemia may be linked to accelerated vascular disease by increasing smooth muscle cell growth and proliferation.


Journal of Clinical Investigation | 1987

Specific action of the lipoxygenase pathway in mediating angiotensin II-induced aldosterone synthesis in isolated adrenal glomerulosa cells.

Jerry L. Nadler; R Natarajan; N Stern

Angiotensin II (AII) in adrenal glomerulosa cells activates phospholipase C resulting in the formation of inositol phosphates and diacylglycerol rich in arachidonic acid (AA). Although glomerulosa cells can metabolize AA via cyclooxygenase (CO), this pathway plays little role in aldosterone synthesis. Recent evidence suggests that the lipoxygenase (LO) pathway may be important for hormonal secretion in endocrine tissues such as the islet of Langerhans. However, the capacity of the glomerulosa cell to synthesize LO products and their role in aldosterone secretion is not known. To study this, the effect of nonselective and selective LO inhibitors on AII, ACTH, and potassium-induced aldosterone secretion and LO product formation was evaluated in isolated rat glomerulosa cells. BW755c, a nonselective LO inhibitor dose dependently reduced the AII-stimulated level of aldosterone without altering AII binding (91 +/- 6 to 36 +/- 4 ng/10(6) cells/h 10(-4) M, P less than 0.001). The same effect was observed with another nonselective LO blocker, phenidone, and a more selective 12-LO inhibitor, Baicalein. In contrast U-60257, a selective 5-LO inhibitor did not change the AII-stimulated levels of aldosterone (208 +/- 11% control, AII 10(-9) M vs. 222 +/- 38%, AII + U-60257). The LO blockers action was specific for AII since neither BW755c nor phenidone altered ACTH or K+-induced aldosterone secretion. AII stimulated the formation of the 12-LO product 12-hydroxyeicosatetraenoic acid (12-HETE) as measured by ultraviolet detection and HPLC in AA loaded cells and by a specific RIA in unlabeled cells (501 +/- 50 to 990 +/- 10 pg/10(5) cells, P less than 0.02). BW755c prevented the AII-mediated rise in 12-HETE formation. In contrast, neither ACTH nor K+ increased 12-HETE levels. The addition of 12-HETE or its unstable precursor 12-HPETE (10(-9) or 10(-8) M) completely restored AII action during LO blockade. AII also produced an increase in 15-HETE formation, but the 15-LO products had no effect on aldosterone secretion. These studies suggest that the 12-LO pathway plays a key role as a new specific mediator of AII-induced aldosterone secretion.


Hypertension | 1999

Angiotensin II Signaling in Vascular Smooth Muscle Cells Under High Glucose Conditions

Rama Natarajan; Stephen Scott; Wei Bai; Kiran Kumar V. Yerneni; Jerry L. Nadler

The mechanisms responsible for the accelerated cardiovascular disease in diabetes, as well as the increased hypertrophic effects of angiotensin II (Ang II) under hyperglycemic conditions, are not very clear. We examined whether the culture of vascular smooth muscle cells (VSMC) under hyperglycemic conditions to simulate the diabetic state can lead to increased activation of key growth- and stress-related kinases, such as the mitogen-activated protein kinases (MAPKs), in the basal state and in response to Ang II. Treatment of porcine VSMC for short time periods (0.5 to 3 hours) with high glucose (HG; 25 mmol/L) markedly increased the activation of the extracellular signal-regulated kinase (ERK1/2) and c-Jun/N-terminal kinase (JNK) relative to cells cultured in normal glucose (NG; 5.5 mmol/L). p38 MAPK also was activated by HG, and this effect remained sustained for several hours. Ang II treatment increased the activity of all 3 families of MAPKs. Ang II-induced ERK activation was potentiated nearly 2-fold in cells treated with HG for 0.5 hour. However, Ang II-induced JNK was not altered. In VSMC cultured for 24 hours with HG, Ang II and HG displayed an additive response on p38 MAPK activity. MAPKs can lead to activation of transcription factors such as activator protein-1 (AP-1). HG alone significantly increased AP-1 DNA-binding activity. Furthermore, Ang II and HG combined had additive effects on AP-1 activity. These results suggest that increased activation of specific MAPKs and downstream transcription factors, such as AP-1, may be key mechanisms for the increased VSMC growth potential of HG alone and of Ang II under HG conditions.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1995

A Leukocyte Type of 12-Lipoxygenase Is Expressed in Human Vascular and Mononuclear Cells Evidence for Upregulation by Angiotensin II

Jeong A. Kim; Jia-Li Gu; Rama Natarajan; Judith A. Berliner; Jerry L. Nadler

The lipoxygenase (LO) pathway has been implicated in leading to accelerated atherosclerosis. However, the precise type of LO present in unstimulated human aortic smooth muscle cells (HSMC), endothelial cells (HAEC), and monocytes (MO) is not clear. In this study, we used a specific reverse-transcriptase polymerase chain reaction (RT-PCR) method to analyze the type of LO mRNA expressed in normal HSMC, HAEC, and MO. In all three cell types, a 333-base-pair band was seen when primers and probes specific for the leukocyte type of 12-LO were used, suggesting that a leukocyte type of 12-LO is expressed in these cell types. Western immunoblotting analysis in cultured HSMC, HAEC, and MO using a polyclonal peptide antibody to the leukocyte type of 12-LO showed a specific 72-kD band that is identical to the molecular weight of the leukocyte type of 12-LO. These results indicate that a leukocyte type of 12-LO RNA and protein are expressed in HSMC, HAEC, and MO. Further, angiotensin II upregulates 12-LO activity and expression in HSMC, supporting a role for this 12-LO pathway in human vascular disease.


Hypertension | 1994

Dietary magnesium prevents fructose-induced insulin insensitivity in rats.

Thomas W. Balon; Arnie P. Jasman; Stephen Scott; Woerner P. Meehan; Robert K. Rude; Jerry L. Nadler

Increased dietary fructose may produce insulin insensitivity and elevate blood pressure in rats. It is possible that the reduced magnesium content of the high-fructose commercial diet used in some studies may play a role in these abnormalities because it is known that magnesium deficiency can produce insulin insensitivity and increased angiotensin II action in humans. To study this, we maintained rats for 9 weeks on either a normal control diet, a standard high-fructose diet, or the same high-fructose diet supplemented with magnesium. Glucose uptake was assessed using a perfused rat hindquarter preparation sequentially with 0, 900, and 120,000 pmol/L of added insulin. Basal serum glucose, plasma insulin, and basal glucose uptake in the absence of insulin were similar among all three groups. However, insulin sensitivity, defined as glucose uptake in the presence of 900 pmol/L insulin minus basal, was depressed in the high-fructose compared with the control group (1.02 +/- 0.38 to 1.77 +/- 0.57 mumol/g per hour, P < .05). In contrast, the high-fructose group supplemented with normal magnesium had similar insulin sensitivity as the control group (2.09 +/- 0.69 mumol/g per hour). Total serum magnesium was reduced in the high-fructose group compared with control or high-fructose plus magnesium-supplemented groups. Blood pressure and fasting insulin levels were also lower in the magnesium-supplemented group. These results suggest that magnesium deficiency and not fructose ingestion per se leads to insulin insensitivity in skeletal muscle and changes in blood pressure.


Journal of Cellular Physiology | 1996

PLATELET-DERIVED GROWTH FACTOR BB MEDIATED REGULATION OF 12-LIPOXYGENASE IN PORCINE AORTIC SMOOTH MUSCLE CELLS

Rama Natarajan; Wei Bai; Vaijayanthy Rangarajan; Noe Gonzales; Jia-Li Gu; Linda Lanting; Jerry L. Nadler

Platelet‐derived growth factor BB (PDGF) is a potent mitogen and chemoattractant for vascular smooth muscle cells (VSMC). In the present study, we have examined the effects of PDGF on the 12‐lipoxygenase (12‐LO) pathway of arachidonate metabolism in porcine aortic VSMC (PVSMC). The rationale for this is previous studies showing that LO products have growth and chemotactic effects in VSMC and that another VSMC growth factor, angiotensin II, is a potent positive regulator of 12‐LO activity and expression. We observed that PDGF causes a significant increase in the formation of the 12‐LO product, 12‐hydroxyeicosatetraenoic acid (12‐HETE) in PVSMC. In addition, PDGF also markedly increased leukocyte‐type 12‐LO messenger RNA and protein expression. PDGF‐induced PVSMC migration was inhibited significantly by two LO blockers but not by a cyclooxygenase blocker. Furthermore, although the proliferative effects of PDGF on PVSMC were not altered by cell culture under hyperglycemic conditions (25 mM glucose, HG), the chemotactic effects of PDGF as well as those of 10% fetal calf serum were significantly greater in cells cultured in HG as compared to normal glucose conditions (5.5 mM), thus indicating a potential new mechanism for the accelerated cardiovascular disease usually observed in diabetes. These results indicate a novel mechanism for the biological effects of PDGF in leading to cardiovascular disease.

Collaboration


Dive into the Jerry L. Nadler's collaboration.

Top Co-Authors

Avatar

Rama Natarajan

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jia-Li Gu

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

David Bleich

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Noe Gonzales

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Songyuan Chen

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Stephen Scott

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Linda Lanting

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar

John J. Rossi

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Judith A. Berliner

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Samuel Rahbar

City of Hope National Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge