Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jerry Lu is active.

Publication


Featured researches published by Jerry Lu.


Cancer Research | 2007

Deregulated Activity of Akt in Epithelial Basal Cells Induces Spontaneous Tumors and Heightened Sensitivity to Skin Carcinogenesis

Carmen Segrelles; Jerry Lu; Brian Hammann; Mirentxu Santos; Marta Moral; José Luis Cascallana; M. Fernanda Lara; Okkyung Rho; Steve Carbajal; Jeanine Traag; Linda Beltrán; Ana Belén Martínez-Cruz; Ramón García-Escudero; Corina Lorz; Sergio Ruiz; Ana Bravo; Jesús M. Paramio; John DiGiovanni

Aberrant activation of the phosphoinositide-3-kinase (PI3K)/PTEN/Akt pathway, leading to increased proliferation and decreased apoptosis, has been implicated in several human pathologies including cancer. Our previous data have shown that Akt-mediated signaling is an essential mediator in the mouse skin carcinogenesis system during both the tumor promotion and progression stages. In addition, overexpression of Akt is also able to transform keratinocytes through transcriptional and posttranscriptional processes. Here, we report the consequences of the increased expression of Akt1 (wtAkt) or constitutively active Akt1 (myrAkt) in the basal layer of stratified epithelia using the bovine keratin K5 promoter. These mice display alterations in epidermal proliferation and differentiation. In addition, transgenic mice with the highest levels of Akt expression developed spontaneous epithelial tumors in multiple organs with age. Furthermore, both wtAkt and myrAkt transgenic lines displayed heightened sensitivity to the epidermal proliferative effects of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) and heightened sensitivity to two-stage skin carcinogenesis. Finally, enhanced susceptibility to two-stage carcinogenesis correlated with a more sustained proliferative response following treatment with TPA as well as sustained alterations in Akt downstream signaling pathways and elevations in cell cycle regulatory proteins. Collectively, the data provide direct support for an important role for Akt signaling in epithelial carcinogenesis in vivo, especially during the tumor promotion stage.


Molecular Carcinogenesis | 2005

Role of PI3K/Akt signaling in insulin‐like growth factor‐1 (IGF‐1) skin tumor promotion

Erik Wilker; Jerry Lu; Okkyung Rho; Steve Carbajal; Linda Beltrán; John DiGiovanni

Overexpression of human IGF‐1 with the bovine keratin 5 (BK5) promoter (BK5.IGF‐1 transgenic mice) induces persistent epidermal hyperplasia and leads to spontaneous skin tumor formation. In previous work, PI3K and Akt activities were found to be elevated in the epidermis of BK5.IGF‐1 transgenic mice compared to nontransgenic littermates. In the present study, we examined the importance of the PI3K/Akt signaling pathway in mediating the skin phenotype and the skin tumor promoting action of IGF‐1 in these mice. Western blot analyses with epidermal lysates showed that signaling components downstream of PI3K/Akt were altered in epidermis of BK5.IGF‐1 mice. Increased phosphorylation of GSK‐3 (Ser9/21), TSC2(Thr1462), and mTOR(Ser2448) was observed. In addition, hypophosphorylation and increased protein levels of β‐catenin were observed in the epidermis of BK5.IGF‐1 mice. These data suggested that components downstream of Akt might be affected, including cell cycle machinery in the epidermis of BK5.IGF‐1 mice. Protein levels of cyclins (D1, E, A), E2F1, and E2F4 were all elevated in the epidermis of BK5.IGF‐1 mice. Also, immunoprecipitation experiments demonstrated an increase in cdk4/cyclin D1 and cdk2/cyclin E complex formation, suggesting increased cdk activity in the epidermis of transgenic mice. In further studies, the PI3K inhibitor, LY294002, significantly blocked IGF‐1‐mediated epidermal proliferation and skin tumor promotion in DMBA‐initiated BK5.IGF‐1 mice. In addition, inhibition of PI3K/Akt with LY294002 reversed many of the cell cycle related changes observed in untreated transgenic animals. Collectively, the current results supported the hypothesis that elevated PI3K/Akt activity and subsequent activation of one or more downstream effector pathways contributed significantly to the tumor promoting action of IGF‐1 in the epidermis of BK5.IGF‐1 mice.


Cancer Research | 2009

Akt activation synergizes with Trp53 loss in oral epithelium to produce a novel mouse model for head and neck squamous cell carcinoma.

Marta Moral; Carmen Segrelles; M. Fernanda Lara; Ana Belén Martínez-Cruz; Corina Lorz; Mirentxu Santos; Ramón García-Escudero; Jerry Lu; Kaoru Kiguchi; Agueda Buitrago; Clotilde Costa; Cristina Saiz; José Luis Rodríguez-Peralto; Francisco J. Martinez-Tello; Maria Rodriguez-Pinilla; Montserrat Sanchez-Cespedes; Marina I. Garin; Teresa Grande; Ana Bravo; John DiGiovanni; Jesús M. Paramio

Head and neck squamous cell carcinoma (HNSCC) is a common human neoplasia with poor prognosis and survival that frequently displays Akt overactivation. Here we show that mice displaying constitutive Akt activity (myrAkt) in combination with Trp53 loss in stratified epithelia develop oral cavity tumors that phenocopy human HNSCC. The myrAkt mice develop oral lesions, making it a possible model of human oral dysplasia. The malignant conversion of these lesions, which is hampered due to the induction of premature senescence, is achieved by the subsequent ablation of Trp53 gene in the same cells in vivo. Importantly, mouse oral tumors can be followed by in vivo imaging, show metastatic spreading to regional lymph nodes, and display activation of nuclear factor-kappaB and signal transducer and activator of transcription-3 pathways and decreased transforming growth factor-beta type II receptor expression, thus resembling human counterparts. In addition, malignant conversion is associated with increased number of putative tumor stem cells. These data identify activation of Akt and p53 loss as a major mechanism of oral tumorigenesis in vivo and suggest that blocking these signaling pathways could have therapeutic implications for the management of HNSCC.


Molecular Cancer Research | 2007

Activation of epidermal akt by diverse mouse skin tumor promoters.

Jerry Lu; Okkyung Rho; Erik Wilker; Linda Beltrán; John DiGiovanni

Akt is a serine/threonine kinase involved in a variety of cellular responses, including cell proliferation and cell survival. Recent studies from our laboratory suggest that Akt signaling may play an important role in skin tumor promotion. To explore this premise, we examined epidermal Akt activation and signaling in response to chemically diverse skin tumor promoters. Mice received single or multiple applications of 12-O-tetradecanoylphorbol-13-acetate (TPA), okadaic acid, or chrysarobin. All three tumor promoters were able to activate epidermal Akt as early as 1 h after treatment. Activation of Akt following tumor promoter treatment led to enhanced downstream signaling, including hyperphosphorylation of glycogen synthase kinase-3β and Bad. Structure activity studies with phorbol ester analogues revealed that the magnitude of activation paralleled tumor-promoting activity. In cultured primary keratinocytes, TPA treatment also led to activation of Akt. Activation of the epidermal growth factor receptor (EGFR) seemed to underlie the ability of TPA to activate Akt as both PD153035, an inhibitor of EGFR, and GW2974, a dual-specific inhibitor of both EGFR and erbB2, were able to effectively reduce TPA-induced Akt phosphorylation as well as TPA-stimulated EGFR and erbB2 tyrosine phosphorylation in a dose-dependent manner. Furthermore, inhibition of protein kinase C (PKC) activity blocked TPA-stimulated heparin-binding EGF production and EGFR transactivation. Inhibition of PKC also led to a decreased association of Akt with the PP2A catalytic subunit, leading to increased Akt phosphorylation. However, combination of EGFR inhibitor and PKC inhibitor completely abrogated TPA-induced activation of Akt. Collectively, the current results support the hypothesis that elevated Akt activity and subsequent activation of downstream signaling pathways contribute significantly to skin tumor promotion. In addition, signaling through the EGFR via EGFR homodimers or EGFR/erbB2 heterodimers may be the primary event leading to Akt activation during tumor promotion in mouse skin. (Mol Cancer Res 2007;5(12):1342–52)


Cancer Letters | 1997

Mechanism of enhancement of esophageal tumorigenesis by 6-phenylhexyl isothiocyanate

Mark A. Morse; Jerry Lu; Rajaram Gopalakrishnan; Lisa A. Peterson; Gulzar Wani; Gary D. Stoner

6-Phenylhexyl isothiocyanate (PHITC) enhances esophageal tumorigenesis induced by the carcinogen N-nitrosomethylbenzylamine (NMBA) in rats while its shorter chain analog, phenethyl isothiocyanate (PEITC), inhibits NMBA-induced esophageal tumorigenesis. A significant increase in O6-methylguanine levels in esophageal DNA at 72 h after NMBA administration to rats pretreated with PHITC suggested that PHITC might enhance NMBA metabolic activation or inhibit DNA repair. To test this hypothesis, groups of 20 rats were administered PEITC or PHITC at concentrations of 0, 1.0, or 2.5 mmol/kg in modified AIN-76A diet for 2 weeks. The esophagi were removed from rats, stripped, split, and maintained in HEPES buffered saline (HBS) for assays of NMBA metabolism (n = 5 per group) or were snap frozen for DNA repair assays (n = 15 per group). The principal metabolites of NMBA produced by esophageal explants were: two unidentified peaks, benzyl alcohol (at 4 h only), and benzoic acid. Esophageal explants from PEITC-treated animals showed a significantly decreased ability to metabolize NMBA as expected. PHITC-treated animals showed a slight inhibition in the formation of most NMBA-related metabolites, rather than an overall increase in NMBA activation. This inhibition was less than that observed with PEITC. No inhibitory effects were observed on O6-alkylguanine transferase (AGT) activity in the esophagi of rats treated with 1.0 micromol/g or 2.5 micromol/g PHITC. Thus, effects of PHITC on esophageal metabolism and DNA repair do not account for the enhancement of NMBA tumorigenicity by PHITC.


Journal of Toxicology and Environmental Health | 1999

METABOLISM OF N-NITROSOBENZYLMETHYLAMINE BY HUMAN CYTOCHROME P-450 ENZYMES

Mark A. Morse; Jerry Lu; Gary D. Stoner; Sharon E. Murphy; Lisa A. Peterson

N-Nitrosobenzylmethylamine (NBzMA) is a potent esophageal carcinogen in rodents, and has been found as a dietary contaminant in certain areas of China where esophageal cancer is endemic. To determine which cytochrome P-450 enzymes in humans are primarily responsible for NBzMA metabolism, microsomes from lymphoblastoid cell lines expressing a panel of human cytochrome P-450s (CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2D6, CYP2E1, CYP2C9, CYP2C19, and CYP3A4) and a panel of 10 different human liver microsomal preparations were examined for their abilities to metabolize [3H]NBzMA. In addition, the ability of human liver microsomes to form various NBzMA metabolites was correlated with the abilities of these preparations to metabolize coumarin, ethoxyresorufin, chlorzoxazone, 7-ethoxy-4-trifluoromethylcoumarin, S-mephenytoin, and nifedipine. NBzMA metabolites were quantitated by reversed-phase high-performance liquid chromatography (HPLC) coupled with flow-through radioactivity detection. Major metabolites included benzaldehyde, benzyl alcohol, benzoic acid, and several uncharacterized radioactive peaks. Of the representative P-450 activities, only CYP2E1 and CYP2A6 catalyzed substantial metabolism of NBzMA. Compared to CYP2E1, CYP2A6 metabolized NBzMA more readily. NBzMA acted as a potent inhibitor of coumarin 7-hydroxylation in CYP2A6 microsomes. Human liver microsomes metabolized NBzMA readily. NBzMA metabolite formation was most highly correlated with coumarin 7-hydroxylase activity, a marker of CYP2A6 activity. 8-Methoxypsoralen substantially inhibited NBzMA metabolism in human hepatic microsomes. When the effects of the potent isothiocyanates PEITC and PHITC were analyzed on microsomes from cell lines expressing CYP2E1 and CYP2A6, it was found that PEITC inhibited both enzymes, PHITC was the more effective inhibitor of CYP2E1, and PHITC was an ineffective inhibitor of CYP2A6. Collectively, these data indicate that CYP2A6 and, to a lesser degree, CYP2E1 are important P-450 enzymes in the activation of NBzMA in human systems.


Journal of Chromatography B: Biomedical Sciences and Applications | 1998

High-performance liquid chromatographic method for measurement of cytochrome P450-mediated metabolism of 7-ethoxy-4-trifluoromethylcoumarin

Mark A. Morse; Jerry Lu

An HPLC method for analysis of deethylation of 7-ethoxy-4-trifluoromethylcoumarin (ETFMC), a substrate of various enzymes of the cytochrome P450 superfamily, was developed. ETFMC was incubated at 37 degrees C with human hepatic microsomes or microsomes prepared from a lymphoblastoid cell line that expresses human CYP2B6. Under these conditions, the highly fluorescent metabolite 7-hydroxy-4-trifluoromethylcoumarin (HTFMC) is formed. The metabolite was analyzed by reversed-phase HPLC with fluorescence detection. The limits of detection of the metabolite were 5.0 fmol per injection, a sensitivity at least one order of magnitude greater than the standard method, which does not involve HPLC. This method will be of great utility when quantities of microsomal protein from cell lines expressing human CYP enzymes are limited.


Cancer Research | 2001

Chemoprevention of Esophageal Tumorigenesis by Dietary Administration of Lyophilized Black Raspberries

Laura A. Kresty; Mark A. Morse; Charlotte Morgan; Peter S. Carlton; Jerry Lu; Ashok Gupta; Michelle Blackwood; Gary D. Stoner


Carcinogenesis | 2001

Inhibition of N-nitrosomethylbenzylamine-induced tumorigenesis in the rat esophagus by dietary freeze-dried strawberries

Peter S. Carlton; Laura A. Kresty; Joseph C. Siglin; Mark A. Morse; Jerry Lu; Charlotte Morgan; Gary D. Stoner


Carcinogenesis | 1999

Expression of cytochrome P450 2A3 in rat esophagus: relevance to N-nitrosobenzylmethylamine

Rajaram Gopalakrishnan; Mark A. Morse; Jerry Lu; Christopher M. Weghorst; Carol L. Sabourin; Gary D. Stoner; Sharon E. Murphy

Collaboration


Dive into the Jerry Lu's collaboration.

Top Co-Authors

Avatar

John DiGiovanni

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary D. Stoner

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Carmen Segrelles

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Linda Beltrán

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Okkyung Rho

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Corina Lorz

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Jesús M. Paramio

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Mirentxu Santos

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Ramón García-Escudero

Complutense University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge