Jerry Thomas
University of York
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jerry Thomas.
Molecular Microbiology | 2008
Piotr Mazurkiewicz; Jerry Thomas; Jessica A. Thompson; Mei Liu; Laurence Arbibe; Philippe J. Sansonetti; David W. Holden
SpvC is encoded by the Salmonella virulence plasmid. We have investigated the biochemical function of SpvC and the mechanism by which it is secreted by bacteria and translocated into infected macrophages. We constructed a strain carrying a deletion in spvC and showed that the strain is attenuated for systemic virulence in mice. SpvC can be secreted in vitro by either the SPI‐1 or SPI‐2 type III secretion systems. Cell biological and genetic experiments showed that translocation of the protein into the cytosol of macrophages by intracellular bacteria is dependent on the SPI‐2 T3SS. Using antibodies specific to phospho‐amino acids and mass spectrometry we demonstrate that SpvC has phosphothreonine lyase activity on full‐length phospho‐Erk (pErk) and a synthetic 13‐amino‐acid phospho‐peptide containing the TXY motif. A Salmonella strain expressing spvC from a plasmid downregulated cytokine release from infected cells.
Science | 2015
Thilo Winzer; Marcelo Kern; Andrew J. King; Tony R. Larson; Roxana Teodor; Samantha L. Donninger; Yi Li; Adam A. Dowle; Jared Cartwright; Rachel Bates; David A. Ashford; Jerry Thomas; Carol Walker; Tim Bowser; Ian A. Graham
Substrate channeling in morphine biosynthesis Poppies are still the most economically viable source of the excellent painkiller morphine. Winzer et al. have now identified a key enzyme in the poppys biosynthetic pathway for morphine. The enzyme turns out to be an unusual protein that contains both cytochrome P-450 and oxidoreductase modules. Together these modules process two subsequent steps in the biosynthetic pathway. The identification of this enzyme may enable alternate routes for morphine biosynthesis that are less dependent on poppy cultivation. Science, this issue p. 309 Poppies have fused into a single protein two enzymatic activities that are sequential in the metabolic pathway for making morphine Morphinan alkaloids from the opium poppy are used for pain relief. The direction of metabolites to morphinan biosynthesis requires isomerization of (S)- to (R)-reticuline. Characterization of high-reticuline poppy mutants revealed a genetic locus, designated STORR [(S)- to (R)-reticuline] that encodes both cytochrome P450 and oxidoreductase modules, the latter belonging to the aldo-keto reductase family. Metabolite analysis of mutant alleles and heterologous expression demonstrate that the P450 module is responsible for the conversion of (S)-reticuline to 1,2-dehydroreticuline, whereas the oxidoreductase module converts 1,2-dehydroreticuline to (R)-reticuline rather than functioning as a P450 redox partner. Proteomic analysis confirmed that these two modules are contained on a single polypeptide in vivo. This modular assembly implies a selection pressure favoring substrate channeling. The fusion protein STORR may enable microbial-based morphinan production.
Journal of Proteome Research | 2014
Salina Abdul Rahman; Ed Bergström; Christopher J. Watson; Katherine M. Wilson; David A. Ashford; Jerry Thomas; Daniel Ungar; Jane Thomas-Oates
We have developed a simple method for the release and isolation of glycoprotein N-glycans from whole-cell lysates using less than a million cells, for subsequent implementation with mass spectrometric analysis. Cellular protein extracts prepared using SDS solubilization were sequentially treated in a membrane filter device to ultimately release glycans enzymatically using PNGase F in the volatile buffer ammonium bicarbonate. The released glycans are recovered in the filtrate following centrifugation and typically permethylated prior to mass spectrometric analysis. We call our method “filter-aided N-glycan separation” and have successfully applied it to investigate N-glycan profiles of wild-type and mutant Chinese hamster ovary cells. This method is readily multiplexed and, because of the small numbers of cells needed, is compatible with the analysis of replicate samples to assess the true nature of glycan variability in tissue culture samples.
Journal of Proteomics | 2012
Stéphanie Ferret-Bernard; William Castro-Borges; Adam A. Dowle; David E. Sanin; Peter C. Cook; Joseph D. Turner; Andrew S. MacDonald; Jerry Thomas; Adrian P. Mountford
Dendritic cells (DCs) play a pivotal role in polarising Th lymphocyte subsets but it is unclear what molecular events occur when DCs generate Th2-type responses. Here, we analysed plasma membrane-enriched fractions from immature, pro-Th1 and pro-Th2 DCs and used a combination of iTRAQ labelling and LC–MS/MS to quantify changes in the proteomes. Analysis was performed on triplicate biological samples and changes verified by flow cytometry. MHC class II molecules and CD29 were up-regulated in pro-Th1 DCs whilst CD18 and CD44 were up-regulated in pro-Th2 DCs. One of the most down-regulated molecules in pro-Th1 DCs was YM-1 whilst the greatest decrease in pro-Th2 DCs was NAP-22. Other molecules up-regulated in pro-Th2 DC compared to pro-Th1 DCs included some potentially involved in protein folding during antigen processing (clathrin and Rab-7), whilst other non-membrane proteins such as enzymes/transporters related to cell metabolism (malate dehydrogenase, pyruvate kinase, and ATPase Na+/K+) were also recorded. This suggests that pro-Th2 DCs are more metabolically active while pro-Th1 DCs have a mature ‘end state’. Overall, although several molecules were preferentially expressed on pro-Th2 DCs, our proteomics data support the view of a ‘limited maturation’ of pro-Th2 DCs compared to pro-Th1 DCs.
Biochemical Journal | 2012
Georgina E. Drury; Adam A. Dowle; David A. Ashford; Wanda M. Waterworth; Jerry Thomas; Christopher E. West
DNA damage detection and repair take place in the context of chromatin, and histone proteins play important roles in these events. Post-translational modifications of histone proteins are involved in repair and DNA damage signalling processes in response to genotoxic stresses. In particular, acetylation of histones H3 and H4 plays an important role in the mammalian and yeast DNA damage response and survival under genotoxic stress. However, the role of post-translational modifications to histones during the plant DNA damage response is currently poorly understood. Several different acetylated H3 and H4 N-terminal peptides following X-ray treatment were identified using MS analysis of purified histones, revealing previously unseen patterns of histone acetylation in Arabidopsis. Immunoblot analysis revealed an increase in the relative abundance of the H3 acetylated N-terminus, and a global decrease in hyperacetylation of H4 in response to DNA damage induced by X-rays. Conversely, mutants in the key DNA damage signalling factor ATM (ATAXIA TELANGIECTASIA MUTATED) display increased histone acetylation upon irradiation, linking the DNA damage response with dynamic changes in histone modification in plants.
Reproductive Biology and Endocrinology | 2014
Mostafa Metwally; Rebecca Preece; Jerry Thomas; William Ledger; Tin-Chiu Li
BackgroundOverweight and obese women have been shown to have an increased risk of recurrent miscarriage as well as other adverse reproductive outcomes, but it is yet unclear whether this is due to an effect on the endometrium, embryo or both. The current study employs proteomic analysis to examine for a potential endometrial defect in obese and overweight women with recurrent miscarriage.MethodsProteomic tissue analysis of 21 endometrial samples obtained In the midluteal phase from 16 women with recurrent miscarriage (obese, n = 12 and lean, n = 4) and 5 fertile volunteers (Obese, n = 2 and Lean, n = 3). Proteins were separated using 2-D gel electrophoresis and principle component analysis was used to quantitatively compare protein expression between groups. Protein spots showing significantly altered expression were identified using mass spectrometry.ResultsObese and overweight recurrent miscarriage patients had a significantly increased endometrial expression of haptoglobin compared to their lean counterparts (p = 0.01). These patients also displayed a significant increase in endometrial expression of transthyretin (p = 0.04) and beta- globulin (p = 0.04). Principle Component Analysis (PCA) of the studied groups also demonstrated that endometrial samples could be grouped based on differences in the BMI, suggesting that obesity is an independent factor influencing endometrial protein expression.ConclusionsThese findings provide preliminary evidence for an alteration in the endometrial protein profile in overweight/obese women with recurrent miscarriage mainly in the form of increased haptoglobin, an inflammatory marker associated with obesity.
Journal of Neurochemistry | 2016
Christopher J.R. Dunning; Hannah L. Black; Katie L. Andrews; Elizabeth C. Davenport; Michael Conboy; Sangeeta Chawla; Adam A. Dowle; David A. Ashford; Jerry Thomas; Gareth Evans
Mint/X11 is one of the four neuronal trafficking adaptors that interact with amyloid precursor protein (APP) and are linked with its cleavage to generate β‐amyloid peptide, a key player in the pathology of Alzheimers disease. How APP switches between adaptors at different stages of the secretory pathway is poorly understood. Here, we show that tyrosine phosphorylation of Mint1 regulates the destination of APP. A canonical SH2‐binding motif (202YEEI) was identified in the N‐terminus of Mint1 that is phosphorylated on tyrosine by C‐Src and recruits the active kinase for sequential phosphorylation of further tyrosines (Y191 and Y187). A single Y202F mutation in the Mint1 N‐terminus inhibits C‐Src binding and tyrosine phosphorylation. Previous studies observed that co‐expression of wild‐type Mint1 and APP causes accumulation of APP in the trans‐Golgi. Unphosphorylatable Mint1 (Y202F) or pharmacological inhibition of Src reduced the accumulation of APP in the trans‐Golgi of heterologous cells. A similar result was observed in cultured rat hippocampal neurons where Mint1(Y202F) permitted the trafficking of APP to more distal neurites than the wild‐type protein. These data underline the importance of the tyrosine phosphorylation of Mint1 as a critical switch for determining the destination of APP.
Proteome Science | 2014
Tugba Can; Laura Faas; David A. Ashford; Adam A. Dowle; Jerry Thomas; Peter O’Toole; Gonzalo Blanco
The myotendinous junction is a specialized structure of the muscle fibre enriched in mechanosensing complexes, including costameric proteins and core elements of the z-disc. Here, laser capture microdissection was applied to purify membrane regions from the myotendinous junctions of mouse skeletal muscles, which were then processed for proteomic analysis. Sarcolemma sections from the longitudinal axis of the muscle fibre were used as control for the specificity of the junctional preparation. Gene ontology term analysis of the combined lists indicated a statistically significant enrichment in membrane-associated proteins. The myotendinous junction preparation contained previously uncharacterized proteins, a number of z-disc costameric ligands (e.g., actinins, capZ, αB cristallin, filamin C, cypher, calsarcin, desmin, FHL1, telethonin, nebulin, titin and an enigma-like protein) and other proposed players of sarcomeric stretch sensing and signalling, such as myotilin and the three myomesin homologs. A subset were confirmed by immunofluorescence analysis as enriched at the myotendinous junction, suggesting that laser capture microdissection from muscle sections is a valid approach to identify novel myotendinous junction players potentially involved in mechanotransduction pathways.
Journal of Agricultural and Food Chemistry | 2017
Gianluca Paredi; Roberto Benoni; Giovanni Pighini; Luca Ronda; Adam A. Dowle; David A. Ashford; Jerry Thomas; Giovanna Saccani; Roberta Virgili; Andrea Mozzarelli
The production of Parma dry-cured ham involves the steps of salting, drying, and ripening. Although sea salt is the only preserving agent, there are strategies being developed with the goal of reducing salt content in order to decrease its negative impact on consumer health. A 24 h pressure treatment was applied before salting to reduce thickness and inequalities in shape. To evaluate the potential impact of the pressure step on the process outcome, differential proteomic analyses by complementary 2D-PAGE and LC-MS/MS were carried out on exudates collected at day 1, 5, and 18 of the salting phase for hams treated or untreated with pressure. Specific proteins were found differentially abundant in exudates from pressed vs unpressed hams and as a function of time. These changes include glycolytic enzymes and several myofibrillar proteins. These findings indicate that pressure causes a faster loosening of the myofibrillar structure with the release of specific groups of proteins.
Methods | 2015
Karen G. Hogg; Jerry Thomas; David A. Ashford; Jared Cartwright; Ruth Coldwell; Daniel J. Weston; John Pillmoor; Dominic Surry; Peter O’Toole
Flow cytometry is a powerful tool for the quantitation of fluorescence and is proven to be able to correlate the fluorescence intensity to the number of protein on cells surface. Mass spectroscopy can also be used to determine the number of proteins per cell. Here we have developed two methods, using flow cytometry and mass spectroscopy to quantify number of transporters in human cells. These two approaches were then used to analyse the same samples so that a direct comparison could be made. Transporters have a major impact on the behaviour of a diverse number of drugs in human systems. While active uptake studies by transmembrane protein transporters using model substrates are routinely undertaken in human cell lines and hepatocytes as part of drug discovery and development, the interpretation of these results is currently limited by the inability to quantify the number of transporters present in the test samples. Here we provide a flow cytometric method for accurate quantification of transporter levels both on the cell surface and within the cell, and compare this to a quantitative mass spectrometric approach. Two transporters were selected for the study: OATP1B1 (also known as SLCO1B1, LST-1, OATP-C, OATP2) due to its important role in hepatic drug uptake and elimination; P-gp (also known as P-glycoprotein, MDR1, ABCB1) as a well characterised system and due to its potential impact on oral bioavailability, biliary and renal clearance, and brain penetration of drugs that are substrates for this transporter. In all cases the mass spectrometric method gave higher levels than the flow cytometry method. However, the two methods showed very similar trends in the relative ratios of both transporters in the hepatocyte samples investigated. The P-gp antibody allowed quantitative discrimination between externally facing transporters located in the cytoplasmic membrane and the total number of transporters on and in the cell. The proportion of externally facing transporter varied considerably in the four hepatocyte samples analysed, ranging from only 6% to 35% of intact and viable cells. The sample with only 6% externally facing transporter was further analysed by confocal microscopy which qualitatively confirmed the low level of transporter in the membrane and the large internal population. Here we prove that flow cytometry is an important tool for future protein analysis as it can not only quantify the number of proteins that a cell express but also identify the number of proteins on the surface and it is easy to apply for routine assays.