Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jerry W. Shay is active.

Publication


Featured researches published by Jerry W. Shay.


European Journal of Cancer | 1997

A survey of telomerase activity in human cancer.

Jerry W. Shay; Silvia Bacchetti

Research on the association of the ribonucleoprotein enzyme, telomerase, with human cancer has expanded rapidly in recent years. Essentially all major types of cancer have been screened and the presence of telomerase activity has been detected in the vast majority of cases. In this article we provide a summary, in table form, of the current data.


Nature | 2005

BRAFE600-associated senescence-like cell cycle arrest of human naevi

Chrysiis Michaloglou; Liesbeth C.W. Vredeveld; Maria S. Soengas; Christophe Denoyelle; Thomas Kuilman; Chantal M.A.M. van der Horst; Donné M. Majoor; Jerry W. Shay; Wolter J. Mooi; Daniel S. Peeper

Most normal mammalian cells have a finite lifespan, thought to constitute a protective mechanism against unlimited proliferation. This phenomenon, called senescence, is driven by telomere attrition, which triggers the induction of tumour suppressors including p16INK4a (ref. 5). In cultured cells, senescence can be elicited prematurely by oncogenes; however, whether such oncogene-induced senescence represents a physiological process has long been debated. Human naevi (moles) are benign tumours of melanocytes that frequently harbour oncogenic mutations (predominantly V600E, where valine is substituted for glutamic acid) in BRAF, a protein kinase and downstream effector of Ras. Nonetheless, naevi typically remain in a growth-arrested state for decades and only rarely progress into malignancy (melanoma). This raises the question of whether naevi undergo BRAFV600E-induced senescence. Here we show that sustained BRAFV600E expression in human melanocytes induces cell cycle arrest, which is accompanied by the induction of both p16INK4a and senescence-associated acidic β-galactosidase (SA-β-Gal) activity, a commonly used senescence marker. Validating these results in vivo, congenital naevi are invariably positive for SA-β-Gal, demonstrating the presence of this classical senescence-associated marker in a largely growth-arrested, neoplastic human lesion. In growth-arrested melanocytes, both in vitro and in situ, we observed a marked mosaic induction of p16INK4a, suggesting that factors other than p16INK4a contribute to protection against BRAFV600E-driven proliferation. Naevi do not appear to suffer from telomere attrition, arguing in favour of an active oncogene-driven senescence process, rather than a loss of replicative potential. Thus, both in vitro and in vivo, BRAFV600E-expressing melanocytes display classical hallmarks of senescence, suggesting that oncogene-induced senescence represents a genuine protective physiological process.


Oncogene | 2004

Hallmarks of senescence in carcinogenesis and cancer therapy

Jerry W. Shay; Igor B. Roninson

Cellular senescence is a signal transduction program leading to irreversible cell cycle arrest. This growth arrest can be triggered by many different mechanisms including recognition by cellular sensors of DNA double-strand breaks leading to the activation of cell cycle checkpoint responses and recruitment of DNA repair foci. Senescence is initiated by the shortening of telomeres (replicative senescence) or by other endogenous and exogenous acute and chronic stress signals (STASIS: stress or aberrant signaling-induced senescence). The process of carcinogenesis involves a series of changes that allow tumor cells to bypass the senescence program. Nevertheless, tumor cells retain the capacity to undergo senescence. Treatment of tumor cells with many conventional anticancer therapies activates DNA damage signaling pathways, which induce apoptosis in some cells and senescence in others. Overexpression of tumor suppressors or inhibition of oncogenes can also induce rapid senescence in tumor cells. Senescent cells, while not dividing, remain metabolically active and produce many secreted factors, some of which stimulate and others inhibit the growth of tumors. The emerging knowledge about the pathways that lead to senescence and determine the pattern of gene expression in senescent cells may lead to more effective treatments for cancer.


Developmental Genetics | 1996

TELOMERASE ACTIVITY IN HUMAN GERMLINE AND EMBRYONIC TISSUES AND CELLS

Woodring E. Wright; Mieczyslaw A. Piatyszek; William E. Rainey; William Byrd; Jerry W. Shay

Telomerase is a ribonucleoprotein that synthesizes telomere repeats onto chromosome ends and is involved in maintaining telomere length in germline tissues and in immortal and cancer cells. In the present study, the temporal regulation of expression of telomerase activity was examined in human germline and somatic tissues and cells during development. Telomerase activity was detected in fetal, newborn, and adult testes and ovaries, but not in mature spermatozoa or oocytes. Blastocysts expressed high levels of telomerase activity as did most human somatic tissues at 16-20 weeks of development with the exception of human brain tissue. This activity could no longer be detected in the somatic tissues examined from the neonatal period onward. Neither placenta nor cultured fetal amniocytes contained detectable telomerase activity. Fetal tissues explanted into primary cell culture showed a dramatic decline in telomerase activity which became undetectable after the first passage in vitro. Elucidation of the regulatory pathways involved in the repression of telomerase activity during development may lead to the ability to manipulate telomerase levels and explore the consequences both for cellular aging and for the survival of cancer cells.


Nature Genetics | 1999

Absence of cancer-associated changes in human fibroblasts immortalized with telomerase

Carmela P. Morales; Shawn E. Holt; Michel M. Ouellette; Kiran Kaur; Ying Yan; Kathleen S. Wilson; Michael A. White; Woodring E. Wright; Jerry W. Shay

The ectopic expression of telomerase in normal human cells results in an extended lifespan, indicating that telomere shortening regulates the timing of cellular senescence. As telomerase expression is a hallmark of cancer, we investigated the long–term effects of forced expression of human telomerase catalytic component (hTERT) in normal human fibroblasts. In vitro growth requirements, cell–cycle checkpoints and karyotypic stability in telomerase–expressing cells are similar to those of untransfected controls. In addition, co–expression of telomerase, the viral oncoproteins HPV16 E6/E7 (which inactivate p53 and pRB) and oncogenic HRAS does not result in growth in soft agar. Thus, although ectopic expression of telomerase in human fibroblasts is sufficient for immortalization, it does not result in changes typically associated with malignant transformation.


Molecular and Cellular Biology | 1992

A transcriptionally active DNA-binding site for human p53 protein complexes.

Walter D. Funk; Daniel T. S. Pak; Richard H. Karas; Woodring E. Wright; Jerry W. Shay

Recent studies have demonstrated transcriptional activation domains within the tumor suppressor protein p53, while others have described specific DNA-binding sites for p53, implying that the protein may act as a transcriptional regulatory factor. We have used a reiterative selection procedure (CASTing: cyclic amplification and selection of targets) to identify new specific binding sites for p53, using nuclear extracts from normal human fibroblasts as the source of p53 protein. The preferred consensus is the palindrome GGACATGCCCGGGCATGTCC. In vitro-translated p53 binds to this sequence only when mixed with nuclear extracts, suggesting that p53 may bind DNA after posttranslational modification or as a complex with other protein partners. When placed upstream of a reporter construct, this sequence promotes p53-dependent transcription in transient transfection assays.


Experimental Cell Research | 1991

A role for both RB and p53 in the regulation of human cellular senescence

Jerry W. Shay; Olivia M. Pereira-Smith; Woodring E. Wright

We present evidence for the possible involvement of both the RB and p53 proteins in the regulation of cellular senescence. Human fibroblasts immortalized with an inducible SV40 T-antigen become senescent following the de-induction of T-antigen. Plasmids expressing an alternative source of intact T-antigen restore proliferation but T-antigen deletion mutants lacking either the RB or p53 binding domains are unable to do so. Similarly, combinations of adenovirus E1A + E1B or human papillomavirus E6 + E7 genes are able to replace T-antigen functions and permit cell proliferation, whereas the individual genes do not. These results are discussed in terms of a two-stage model for the escape from in vitro cellular senescence.


Microbiology and Molecular Biology Reviews | 2002

Human Telomerase and Its Regulation

Yu-Sheng Cong; Woodring E. Wright; Jerry W. Shay

SUMMARY The telomere is a special functional complex at the end of linear eukaryotic chromosomes, consisting of tandem repeat DNA sequences and associated proteins. It is essential for maintaining the integrity and stability of linear eukaryotic genomes. Telomere length regulation and maintenance contribute to normal human cellular aging and human diseases. The synthesis of telomeres is mainly achieved by the cellular reverse transcriptase telomerase, an RNA-dependent DNA polymerase that adds telomeric DNA to telomeres. Expression of telomerase is usually required for cell immortalization and long-term tumor growth. In humans, telomerase activity is tightly regulated during development and oncogenesis. The modulation of telomerase activity may therefore have important implications in antiaging and anticancer therapy. This review describes the currently known components of the telomerase complex and attempts to provide an update on the molecular mechanisms of human telomerase regulation.


Nature Medicine | 1995

Correlating telomerase activity levels with human neuroblastoma outcomes

Eiso Hiyama; Takashi Yokoyama; Yuichiro Matsuura; Mieczyslaw A. Piatyszek; Jerry W. Shay

Telomerase activity was analysed in 100 neuroblastoma cases. Although telomerase activity was not detected in normal adrenal tissues or benign ganglioneuromas, almost all neuroblastomas (94%) did express it, suggesting an important role for telomerase in neuroblastoma development. Neuroblastomas with high telomerase activity had other genetic changes (for example, N-myc amplification) and an unfavourable prognosis, whereas tumours with low telomerase activity were devoid of such genetic alterations and were associated with a favourable prognosis. Three neuroblastomas lacking telomerase activity regressed (stage IVS). Thus telomerase expression may be required as a critical step in the multigenetic process of tumorigenesis, and two different pathways may exist for the development of neuroblastoma.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Adult-onset pulmonary fibrosis caused by mutations in telomerase

Kalliopi D. Tsakiri; Jennifer T. Cronkhite; Phillip J. Kuan; Chao Xing; Ganesh Raghu; Jonathan C. Weissler; Randall L. Rosenblatt; Jerry W. Shay; Christine Kim Garcia

Idiopathic pulmonary fibrosis (IPF) is an adult-onset, lethal, scarring lung disease of unknown etiology. Some individuals with IPF have a familial disorder that segregates as a dominant trait with incomplete penetrance. Here we used linkage to map the disease gene in two families to chromosome 5. Sequencing a candidate gene within the interval, TERT, revealed a missense mutation and a frameshift mutation that cosegregated with pulmonary disease in the two families. TERT encodes telomerase reverse transcriptase, which together with the RNA component of telomerase (TERC), is required to maintain telomere integrity. Sequencing the probands of 44 additional unrelated families and 44 sporadic cases of interstitial lung disease revealed five other mutations in TERT. A heterozygous mutation in TERC also was found in one family. Heterozygous carriers of all of the mutations in TERT or TERC had shorter telomeres than age-matched family members without the mutations. Thus, mutations in TERT or TERC that result in telomere shortening over time confer a dramatic increase in susceptibility to adult-onset IPF.

Collaboration


Dive into the Jerry W. Shay's collaboration.

Top Co-Authors

Avatar

Woodring E. Wright

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

John D. Minna

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Adi F. Gazdar

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Mieczyslaw A. Piatyszek

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruben D. Ramirez

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Brittney Shea Herbert

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kimberly Batten

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sang Bum Kim

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge