Jerzy J. Bilski
North Dakota State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jerzy J. Bilski.
Endocrine | 1999
Kay M. Abdullah; Girish Luthra; Jerzy J. Bilski; S. Ahmed Abdullah; Lawrence P. Reynolds; Dale A. Redmer; Anna T. Grazul-Bilska
Wound healing involves the interactions of many cell types, and is controlled in part by growth factors. Intercellular communication mediated by gap junctions is considered to play an important role in the coordination of cellular metabolism during the growth and development of tissues and organs. Basic fibroblast growth factor (bFGF), known to be important in wound healing, has been found to increase Cx43 expression and intercellular communication in endothelial cells and cardiac fibroblasts. It has been proposed that an increased coupling is necessary for the coordination of these cells in wound healing and angiogenesis, and that one of the actions of bFGF is to modulate intercellular communication. The aim of our study was to evaluate the effects of bFGF on gap junctional intercellular communication (GJIC) in vitro, and the presence of gap junctional proteins connexin (Cx) 26, Cx32, and Cx43 in fibroblasts of diabetic and nondiabetic individuals. Fibroblast cell lines (n=10) were cultured for 3 d in serum-free media with or without bFGF (3 ng/mL). Cells were evaluated for the rate of GJIC by using laser cytometry, and for the presence of Cx26, Cx32, and Cx43 by immunohistochemical and Western analyses. All cell types communicated via contact-dependent mechanisms. The rate of GJIC was greater (p<0.01) for diabetic than for nondiabetic fibroblasts (4.1±0.01 vs 3.3±0.01 %/min). bFGF increased (p<0.01) the rate of GJIC for diabetic (4.9±0.01 vs 4.1±0.01%) and nondiabetic (4.1±0.01 vs 3.3±0.01%) fibroblasts. Immunohistochemistry identified Cx26 in the cytoplasm, Cx32 was not detected, and Cx43 was present on the cellular borders in all cultures. Image analysis of immunofluorescent staining demonstrated that bFGF increased (p<0.05) Cx43 expression in diabetic and nondiabetic fibroblasts. Western immunoblot analysis revealed bands at 43–46 kD that were similar in volume for diabetic and nondiabetic fibroblasts. Thus, gap junctions involving Cx43 and GJIC among fibroblasts appear to be targets for bFGF. Fibroblasts of diabetic individuals appear to have an increased rate of cell-cell coupling, correlating with a decreased rate of proliferation.
Reproduction | 2010
Anna T. Grazul-Bilska; P. P. Borowicz; Mary Lynn Johnson; Megan Minten; Jerzy J. Bilski; Robert Wroblewski; Dale A. Redmer; Lawrence P. Reynolds
Placental vascular development (angiogenesis) is critical for placental function and thus for normal embryonic/fetal growth and development. Specific environmental factors or use of assisted reproductive techniques may result in poor placental angiogenesis, which may contribute to embryonic losses and/or fetal growth retardation. Uterine tissues were collected on days 14, 16, 18, 20, 22, 24, 26, 28, and 30 after mating and on day 10 after estrus (nonpregnant controls) to determine vascular development and expression of several factors involved in the regulation of angiogenesis in the endometrium. Compared with controls, several measurements of endometrial vascularity increased (P<0.001) including vascular labeling index (LI; proportion of proliferating cells), the tissue area occupied by capillaries, area per capillary (capillary size), total capillary circumference per unit of tissue area, and expression of factor VIII (marker of endothelial cells), but capillary number decreased (P<0.001). Compared with controls, mRNA for placental growth factor, vascular endothelial growth factor receptors, angiopoietins (ANGPT) 1 and 2, ANGPT receptor TEK, endothelial nitric oxide synthase, and hypoxia-inducible factor 1alpha increased (P<0.05) during early pregnancy. Vascular LI was positively correlated (P<0.05) with several measurements of vascularity and with mRNA expression of angiogenic factors. These data indicate that endometrial angiogenesis, manifested by increased vascularity and increased expression of several factors involved in the regulation of angiogenesis, is initiated very early in pregnancy. This more complete description of early placental angiogenesis may provide the foundation for determining whether placental vascular development is altered in compromised pregnancies.
Reproduction | 2011
Anna T. Grazul-Bilska; Mary Lynn Johnson; P. P. Borowicz; Megan Minten; Jerzy J. Bilski; Robert Wroblewski; Mila Velimirovich; Lindsey R Coupe; Dale A. Redmer; Lawrence P. Reynolds
To characterize early fetal placental development, gravid uterine tissues were collected from pregnant ewes every other day from day 16 to 30 after mating. Determination of 1) cell proliferation was based on Ki67 protein immunodetection; 2) global methylation was based on 5-methyl-cytosine (5mC) expression and mRNA expression for DNA methyltransferases (DNMTs) 1, 3a, and 3b; and 3) vascular development was based on smooth muscle cell actin immunolocalization and on mRNA expression of several factors involved in the regulation of angiogenesis in fetal membranes (FMs). Throughout early pregnancy, the labeling index (proportion of proliferating cells) was very high (21%) and did not change. Expression of 5mC and mRNA for DNMT3b decreased, but mRNA for DNMT1 and 3a increased. Blood vessels were detected in FM on days 18-30 of pregnancy, and their number per tissue area did not change. The patterns of mRNA expression for placental growth factor, vascular endothelial growth factor, and their receptors FLT1 and KDR; angiopoietins 1 and 2 and their receptor TEK; endothelial nitric oxide synthase and the NO receptor GUCY13B; and hypoxia inducing factor 1 α changed in FM during early pregnancy. These data demonstrate high cellular proliferation rates, and changes in global methylation and mRNA expression of factors involved in the regulation of DNA methylation and angiogenesis in FM during early pregnancy. This description of cellular and molecular changes in FM during early pregnancy will provide the foundation for determining the basis of altered placental development in pregnancies compromised by environmental, genetic, or other factors.
Reproduction | 2009
Anna T. Grazul-Bilska; J. S. Caton; Wendy Arndt; Kelly Burchill; Clayton Thorson; Ewa Borowczyk; Jerzy J. Bilski; Dale A. Redmer; Lawrence P. Reynolds; K. A. Vonnahme
Sheep were fed a maintenance (M) diet with adequate (A) Se or high (H) Se concentration from 21 days before breeding to day 135 of pregnancy. From day 50 to day 135 of pregnancy (tissue collection day), a portion of the ewes from ASe and HSe groups were fed restricted (R; 60% of M) diet. Fetal ovarian sections were stained for: 1) the presence of proliferating cell nuclear antigen (a marker of proliferating cells) to determine the proportion of proliferating primordial follicles, or the labeling index (LI; percentage of proliferating cells) for primordial, primary, secondary and antral follicles, stromal tissues, and blood vessels; 2) factor VIII (a marker of endothelial cells) or 3) a presence of apoptotic cells/bodies. The number of proliferating primordial follicles and the LI of primordial follicles was decreased by R and/or HSe diets. The LI was similar for theca and granulosa cells, and for secondary or antral follicles, but was greater in secondary and antral than in primordial and primary follicles. R diet and/or Se affected the LI in all follicle types, in stromal tissues and blood vessels. A dense network of blood vessels was detected in the areas containing secondary to antral follicles, medulla, and hilus, but areas containing primordial follicles were poorly vascularized. The number of apoptotic cells was minimal. These results demonstrate that nutrient restriction and/or Se level in the maternal diet affected cellular proliferation in follicles, blood vessels, and stromal tissues in fetal ovaries. Thus, plane of nutrition and Se in the maternal diet may impact fetal ovarian development and function.
Reproductive Biology and Endocrinology | 2008
Anna T. Grazul-Bilska; Jashoman Banerjee; Ilker Yazici; Ewa Borowczyk; Jerzy J. Bilski; Rakesh K. Sharma; Maria Z Siemionov; Tommaso Falcone
BackgroundThe objective of this study was to perform complex characterization of cryopreserved and then autotransplanted ovaries including determination of the ability to respond to in vivo follicle stimulating hormone (FSH)-treatment, fertilizability of retrieved oocytes, and morphology, vascularization, cellular proliferation and apoptosis in sheep.MethodsMature crossbred ewes were divided into two groups; an intact (control) group (n = 4), and autotransplanted group (n = 4) in which oophorectomy was performed laparoscopically and ovaries with intact vascular pedicles frozen, thawed and transplanted back into the same animal at a different site. Approximately five months after autotransplantation, estrus was synchronized, ewes were treated with FSH, and ovaries were collected. For all ovaries, number of visible follicles was determined, and collected cumulus oocyte complexes (COC) were matured and fertilized in vitro. Remaining ovarian tissues were fixed for evaluation of morphology, expression of factor VIII (marker of endothelial cells), vascular endothelial growth factor (VEGF; expressed by pericytes and smooth muscle cells), and smooth muscle cell actin (SMCA; marker of pericytes and smooth muscle cells), and cellular proliferation and apoptosis. Two fully functional ovaries were collected from each control ewe (total 8 ovaries).ResultsOut of eight autotransplanted ovaries, a total of two ovaries with developing follicles were found. Control ewes had 10.6 +/- 2.7 follicles/ovary, oocytes were in vitro fertilized and developed to the blastocyst stage. One autotransplanted ewe had 4 visible follicles from which 3 COC were collected, but none of them was fertilized. The morphology of autotransplanted and control ovaries was similar. In control and autotransplanted ovaries, primordial, primary, secondary, antral and preovulatory follicles were found along with fully functional vascularization which was manifested by expression of factor VIII, VEGF and SMCA. Proliferating cells were detected in follicles, and the rate of apoptosis was minimal in ovaries of control and autotransplanted ovaries.ConclusionThese data demonstrate successful autotransplantation of a portion of frozen/thawed ovaries manifested by restoration of selected ovarian function including in vitro maturation of collected oocytes, presence of follicles from several stages of folliculogenesis and blood vessels expressing specific markers of vascularization, and proliferation and apoptosis of ovarian cells. Thus, heterotopic autotransplantation of a whole frozen/thawed ovary allows for development of preovulatory follicles, oocyte growth, and for restoration of vascularization and cellular function. However, additional improvements are required to enhance the efficiency of autotransplantation of frozen/thawed ovaries to produce more oocytes.
Theriogenology | 2001
T.K. Stenbak; Dale A. Redmer; H.R. Berginski; A.S. Erickson; Chainarong Navanukraw; M.J. Toutges; Jerzy J. Bilski; J. D. Kirsch; Kim C. Kraft; Lawrence P. Reynolds; Anna T. Grazul-Bilska
Administration of FSH increases the number of developing follicles, and affects oocyte health and cleavage rate. To determine the optimal level of FSH treatment, studies were conducted during the normal breeding season and seasonal anestrus. In Experiment 1, ewes were implanted with SyncroMate-B (SMB; norgestomet) for 14 days during the breeding season. Beginning on day 12 or 13 after SMB implantation, ewes were treated with saline (control; n=10), or treated with FSH for two days (2D; n=9) or three days (3D; n=10). In Experiment 2, conducted during seasonal anestrus, ewes were implanted with SMB for 14 days (n=23) or were not implanted (n=26). The SMB-implanted and nonimplanted ewes were assigned to one of three treatments as in Experiment 1: control (n=13), 2D (n=21) or 3D (n=15). In Experiments 1 and 2, ewes were laparotomized to count the number of follicles < or = 3 mm and > 3 mm and to retrieve oocytes. Healthy oocytes from each treatment were used for IVF. In Experiment 3, ewes (n=6) were implanted twice with SMB for 14 days during seasonal anestrus. Ewes were injected with FSH for 2 days, and the oocytes were collected and fertilized as in Experiments 1 and 2. In Experiment 1, FSH-treatment increased (P < 0.05) the number of follicles > 3 mm, the number of oocytes retrieved from follicles < or = 3 mm and > 3 mm, the proportion of healthy oocytes, and the number of oocytes used for IVF. Oocytes from control and 2D ewes had greater (P < 0.01) cleavage rates than 3D ewes (68% and 71% vs. 42%). In Experiment 2, implanted and nonimplanted ewes had similar (P > 0.05) numbers of follicles, total oocytes, and healthy oocytes; therefore, data were combined. The FSH treatment increased (P < 0.01) the number of follicles > 3 mm, and the number of oocytes recovered from follicles > 3 mm. The recovery rate of oocytes and the percentage of healthy oocytes were similar for control and FSH-treated ewes. The cleavage rate in Experiment 2 ranged from 4 to 16%. In Experiment 3, the cleavage rate for ewes treated twice with SMB was 27% which tended to be greater (P < 0.07) than for the 2D ewes that received one SMB implant in Experiment 2. These data indicate that FSH increased the number of developing follicles and the number of healthy oocytes retrieved from ewes during the breeding season and seasonal anestrus. However, cleavage rates during seasonal anestrus were lower than during the normal breeding season in both FSH-treated and control ewes. Treatment of ewes for 2 days with FSH resulted in a greater cleavage rate than treatment of ewes for 3 days.
Domestic Animal Endocrinology | 2012
Anna T. Grazul-Bilska; Ewa Borowczyk; Jerzy J. Bilski; Lawrence P. Reynolds; Dale A. Redmer; J. S. Caton; K. A. Vonnahme
To determine effects of maternal diet on in vitro fertilization (IVF) and early embryonic development, ewes (n = 48) were divided into control, overfed (ad libitum feeding), and underfed (60% of control) nutritional planes for 8 wk before oocyte collection. Follicular development was induced by twice-daily injections of FSH on days 13 and 14 of the estrous cycle, and ovaries and blood samples were collected on day 15 of the estrous cycle. During the 8-wk experiment, for control ewes BW and BCS did not change, but for overfed ewes mean (± SEM) BW and BCS increased (11.8 ± 1.1 kg and 2.0 ± 0.1, respectively) and for underfed ewes decreased (14.2 ± 0.9 kg and 0.7 ± 0.1, respectively). The number of follicles was determined; oocytes were collected and subjected to in vitro maturation and fertilization. After IVF, developing embryos were evaluated throughout the 8-d culture period. The proportion of cleaved oocytes after IVF and developing morula and blastocyst were less (P < 0.0001) in overfed and underfed ewes than in control ewes. However, number of visible follicles, total number of oocytes, number of healthy oocytes, and percentage of healthy oocytes were similar for control, overfed, and underfed ewes. Serum insulin concentration was greater (P < 0.05) in overfed ewes than in underfed ewes, estradiol 17-β (E(2)) concentration was greater (P < 0.05) in underfed ewes than in overfed ewes, but triiodothyronine (T(3)) and thyroxine (T(4)) concentrations were similar in all treatment groups. These data show that inadequate feeding has a negative effect on oocyte quality which results in lower oocyte cleavage after IVF and morula and blastocyst formation; overfeeding increased serum insulin and underfeeding increased serum E(2) but not T(3) or T(4). These data emphasize the importance of diet for reproductive and metabolic functions. Furthermore, the mechanisms through which enhanced or decreased energy in diet affect oocyte quality and serum insulin and E(2) concentrations remain to be elucidated.
Theriogenology | 2003
Anna T. Grazul-Bilska; J.T. Choi; Jerzy J. Bilski; R.M. Weigl; J. D. Kirsch; Kim C. Kraft; Lawrence P. Reynolds; Dale A. Redmer
Epidermal growth factor (EGF) has been shown to enhance the in vitro rate of blastocyst formation in several species. Follicular development was induced in ewes (n=15) by twice daily administration of FSH-P on Days 13 and 14 of the estrous cycle. Cumulus oocyte complexes (COCs) were collected from all visible follicles (n=25+/-2.4/ewe) on Day 15. COCs from each ewe were cultured separately for 24h in maturation medium (containing 10% serum, LH, FSH and estradiol) with (8.2+/-0.9 per ewe) or without (7.8+/-0.8 per ewe) EGF (10 ng/ml). Oocytes were then denuded by hyaluronidase treatment, and healthy oocytes were cultured in the presence of frozen-thawed semen in synthetic oviductal fluid (SOF) medium containing 2% sheep serum. After 18-20 h, zygotes were transferred to SOF medium without glucose and cultured for about 36 h until they reached the 4-8 cell stage. Embryos were transferred to SOF medium with glucose for further development. Medium was changed every other day until blastocyst formation on Day 8 of culture (Day 1=day of fertilization). The rate of embryonic development was evaluated throughout the culture period. After maturation, cumulus cells were more expanded in the presence than in the absence of EGF. The rates of fertilization (overall 75.7+/-3.9%) and morula formation (overall 40.6+/-7.1%) were similar (P>0.05) for COCs cultured with or without EGF. However, EGF increased (P<0.01) the number of blastocysts (1.4+/-0.1 versus 0.6+/-0.2 per ewe) and tended to increase (P<0.1) the rate of blastocyst formation (21.0+/-6.6% versus 13.4+/-4.3% per ewe). These data demonstrate that EGF increases blastocyst formation in FSH-treated ewes. Therefore, EGF is recommended as a supplement to maturation medium to enhance embryonic development in vitro in FSH-treated sheep.
Biology of Reproduction | 2001
Anna T. Grazul-Bilska; Lawrence P. Reynolds; Jerzy J. Bilski; Dale A. Redmer
Abstract Corpora lutea (CL) from Days 5, 10, and 15 after superovulation were enzymatically dispersed, and a portion of the cells were elutriated to obtain fractions enriched with small or large luteal cells. Mixed, small, and large luteal cell fractions were incubated with no treatment or with agonists or antagonists of cAMP (dbcAMP or Rp-cAMPS), protein kinase C (PKC; TPA or H-7), or calcium (A23187, EGTA, or A23187 + EGTA). The rate of contact-dependent gap junctional intercellular communication (GJIC) was evaluated by laser cytometry. Media were collected for progesterone (P4) radioimmunoassay, and luteal cells cultured with no treatment were fixed for immunocytochemistry or frozen for Western blot analysis. Luteal cells from each stage of the estrous cycle exhibited GJIC. The dbcAMP increased (P < 0.05) GJIC for all cell types across the estrous cycle. The Rp-cAMPS decreased (P < 0.05) GJIC for small luteal cells on Day 5 and for all cell types on Days 10 and 15. The TPA inhibited (P < 0.01), but H-7 did not affect, GJIC for all cell types across the estrous cycle. The A23187 decreased (P < 0.05) GJIC for large luteal cells touching only small or only large luteal cells, whereas A23187 + EGTA decreased (P < 0.05) GJIC for all cell types across the estrous cycle. For the mixed and large luteal cell fractions, dbcAMP increased (P < 0.05), but TPA and A23187 + EGTA decreased (P < 0.05), P4 secretion. The A23187 alone decreased (P < 0.05) P4 secretion by large, but not by mixed, luteal cells. For all days and cell types, the rate of GJIC and P4 secretion were correlated (r = 0.113–0.249; P < 0.01). Connexin 43 was detected in cultured luteal cells by immunofluorescence and Western immunoblotting. Thus, intracellular regulators like cAMP, PKC, or calcium appear to regulate GJIC, which probably is an important mechanism for coordinating function of the ovine CL.
Endocrine | 1998
Anna T. Grazul-Bilska; Dale A. Redmer; Jerzy J. Bilski; Albina Jablonka-Shariff; Vinayak Doraiswamy; Lawrence P. Reynolds
Ovarian follicles from days 13, 14, 15, and 16 and corpora lutea (CL) from days 2, 4, 8, 12, and 15 of the estrous cycle were evaluated for the presence of connexins by immunohistochemistry. In addition, CL from days 5, 10, and 15 of the estrous cycle were used for immunofluorescent detection of Cx43 followed by image analysis, and for Western immunoblot. In all tissues, staining for all connexins appeared punctate, indicating the presence of assembled gap junctions. Cx26 was present in the ovarian surface epithelium, stroma, and blood vessels within the stroma and hilus, and in the CL. In healthy antral follicles, Cx26 was present only in the theca layer, whereas Cx43 was present in granulosa and theca layers. In the majority of atretic follicles, connexins were not detected, but in 13% of the atretic follicles, Cx43 was present in the theca layer. Cx32 was detected in the blood vessels of ovarian stroma and in the CL, and Cx43 was detected in the CL. Localization and/or expression of connexins depended on stage of luteal development. Western analysis demonstrated that expression of Cx32 in luteal tissues was similar across the estrous cycle. The area of positive staining for Cx43 and expression of Cx43 in luteal tissues decreased (p < 0.05) as the estrous cycle progressed. The pattern of expression of connexins indicates that gap junctional proteins may be important in the regulation of folliculogenesis and follicular atresia, as well as growth, differentiation, and regression of the CL.