Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jerzy Osipiuk is active.

Publication


Featured researches published by Jerzy Osipiuk.


Structure | 1997

Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain

M Sriram; Jerzy Osipiuk; Brian C. Freeman; Richard I. Morimoto; Andrzej Joachimiak

BACKGROUND The 70 kDa heat shock proteins (Hsp70) are a family of molecular chaperones, which promote protein folding and participate in many cellular functions. The Hsp70 chaperones are composed of two major domains. The N-terminal ATPase domain binds to and hydrolyzes ATP, whereas the C-terminal domain is required for polypeptide binding. Cooperation of both domains is needed for protein folding. The crystal structure of bovine Hsc70 ATPase domain (bATPase) has been determined and, more recently, the crystal structure of the peptide-binding domain of a related chaperone, DnaK, in complex with peptide substrate has been obtained. The molecular chaperone activity and conformational switch are functionally linked with ATP hydrolysis. A high-resolution structure of the ATPase domain is required to provide an understanding of the mechanism of ATP hydrolysis and how it affects communication between C- and N-terminal domains. RESULTS The crystal structure of the human Hsp70 ATPase domain (hATPase) has been determined and refined at 1. 84 A, using synchrotron radiation at 120K. Two calcium sites were identified: the first calcium binds within the catalytic pocket, bridging ADP and inorganic phosphate, and the second calcium is tightly coordinated on the protein surface by Glu231, Asp232 and the carbonyl of His227. Overall, the structure of hATPase is similar to bATPase. Differences between them are found in the loops, the sites of amino acid substitution and the calcium-binding sites. Human Hsp70 chaperone is phosphorylated in vitro in the presence of divalent ions, calcium being the most effective. CONCLUSIONS The structural similarity of hATPase and bATPase and the sequence similarity within the Hsp70 chaperone family suggest a universal mechanism of ATP hydrolysis among all Hsp70 molecular chaperones. Two calcium ions have been found in the hATPase structure. One corresponds to the magnesium site in bATPase and appears to be important for ATP hydrolysis and in vitro phosphorylation. Local changes in protein structure as a result of calcium binding may facilitate phosphorylation. A small, but significant, movement of metal ions and sidechains could position catalytically important threonine residues for phosphorylation. The second calcium site represents a new calcium-binding motif that can play a role in the stabilization of protein structure. We discuss how the information about catalytic events in the active site could be transmitted to the peptide-binding domain.


Nature Methods | 2008

Large-scale evaluation of protein reductive methylation for improving protein crystallization

Youngchang Kim; Pearl Quartey; Hui Li; Lour Volkart; Catherine Hatzos; Changsoo Chang; Boguslaw Nocek; Marianne E. Cuff; Jerzy Osipiuk; Kemin Tan; Yao Fan; Lance Bigelow; Natalia Maltseva; Ruiying Wu; Maria Borovilos; Erika Duggan; Min Zhou; T. Andrew Binkowski; Rongguang Zhang; Andrzej Joachimiak

Large-scale evaluation of protein reductive methylation for improving protein crystallization


Journal of Biological Chemistry | 2007

Methyltransferase That Modifies Guanine 966 of the 16 S rRNA FUNCTIONAL IDENTIFICATION AND TERTIARY STRUCTURE

Dmitry V. Lesnyak; Jerzy Osipiuk; Tatiana Skarina; Petr V. Sergiev; Alexey A. Bogdanov; A. Edwards; Alexei Savchenko; Andrzej Joachimiak; Olga A. Dontsova

N2-Methylguanine 966 is located in the loop of Escherichia coli 16 S rRNA helix 31, forming a part of the P-site tRNA-binding pocket. We found yhhF to be a gene encoding for m2G966 specific 16 S rRNA methyltransferase. Disruption of the yhhF gene by kanamycin resistance marker leads to a loss of modification at G966. The modification could be rescued by expression of recombinant protein from the plasmid carrying the yhhF gene. Moreover, purified m2G966 methyltransferase, in the presence of S-adenosylomethionine (AdoMet), is able to methylate 30 S ribosomal subunits that were purified from yhhF knock-out strain in vitro. The methylation is specific for G966 base of the 16 S rRNA. The m2G966 methyltransferase was crystallized, and its structure has been determined and refined to 2.05Å. The structure closely resembles RsmC rRNA methyltransferase, specific for m2G1207 of the 16 S rRNA. Structural comparisons and analysis of the enzyme active site suggest modes for binding AdoMet and rRNA to m2G966 methyltransferase. Based on the experimental data and current nomenclature the protein expressed from the yhhF gene was renamed to RsmD. A model for interaction of RsmD with ribosome has been proposed.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Polyphosphate-dependent synthesis of ATP and ADP by the family-2 polyphosphate kinases in bacteria

Boguslaw Nocek; Samvel Kochinyan; Michael Proudfoot; Greg Brown; Elena Evdokimova; Jerzy Osipiuk; A. Edwards; Alexei Savchenko; Andrzej Joachimiak; Alexander F. Yakunin

Inorganic polyphosphate (polyP) is a linear polymer of tens or hundreds of phosphate residues linked by high-energy bonds. It is found in all organisms and has been proposed to serve as an energy source in a pre-ATP world. This ubiquitous and abundant biopolymer plays numerous and vital roles in metabolism and regulation in prokaryotes and eukaryotes, but the underlying molecular mechanisms for most activities of polyP remain unknown. In prokaryotes, the synthesis and utilization of polyP are catalyzed by 2 families of polyP kinases, PPK1 and PPK2, and polyphosphatases. Here, we present structural and functional characterization of the PPK2 family. Proteins with a single PPK2 domain catalyze polyP-dependent phosphorylation of ADP to ATP, whereas proteins containing 2 fused PPK2 domains phosphorylate AMP to ADP. Crystal structures of 2 representative proteins, SMc02148 from Sinorhizobium meliloti and PA3455 from Pseudomonas aeruginosa, revealed a 3-layer α/β/α sandwich fold with an α-helical lid similar to the structures of microbial thymidylate kinases, suggesting that these proteins share a common evolutionary origin and catalytic mechanism. Alanine replacement mutagenesis identified 9 conserved residues, which are required for activity and include the residues from both Walker A and B motifs and the lid. Thus, the PPK2s represent a molecular mechanism, which potentially allow bacteria to use polyP as an intracellular energy reserve for the generation of ATP and survival.


Journal of Molecular Biology | 2012

Interaction of j-protein co-chaperone jac1 with fe-s scaffold isu is indispensable in vivo and conserved in evolution.

Szymon J. Ciesielski; Brenda Schilke; Jerzy Osipiuk; Lance Bigelow; Rory Mulligan; Julia Majewska; Andrzej Joachimiak; Jaroslaw Marszalek; Elizabeth A. Craig; Rafal Dutkiewicz

The ubiquitous mitochondrial J-protein Jac1, called HscB in Escherichia coli, and its partner Hsp70 play a critical role in the transfer of Fe-S clusters from the scaffold protein Isu to recipient proteins. Biochemical results from eukaryotic and prokaryotic systems indicate that formation of the Jac1-Isu complex is important for both targeting of the Isu for Hsp70 binding and stimulation of Hsp70s ATPase activity. However, in apparent contradiction, we previously reported that an 8-fold decrease in Jac1s affinity for Isu1 is well tolerated in vivo, raising the question as to whether the Jac1:Isu interaction actually plays an important biological role. Here, we report the determination of the structure of Jac1 from Saccharomyces cerevisiae. Taking advantage of this information and recently published data from the homologous bacterial system, we determined that a total of eight surface-exposed residues play a role in Isu binding, as assessed by a set of biochemical assays. A variant having alanines substituted for these eight residues was unable to support growth of a jac1-Δ strain. However, replacement of three residues caused partial loss of function, resulting in a significant decrease in the Jac1:Isu1 interaction, a slow growth phenotype, and a reduction in the activity of Fe-S cluster-containing enzymes. Thus, we conclude that the Jac1:Isu1 interaction plays an indispensable role in the essential process of mitochondrial Fe-S cluster biogenesis.


Journal of Structural and Functional Genomics | 2011

Crystal structure of secretory protein Hcp3 from Pseudomonas aeruginosa

Jerzy Osipiuk; Xiaohui Xu; Hong Cui; Alexei Savchenko; A. Edwards; Andrzej Joachimiak

The Type VI secretion pathway transports proteins across the cell envelope of Gram-negative bacteria. Pseudomonas aeruginosa, an opportunistic Gram-negative bacterial pathogen infecting humans, uses the type VI secretion pathway to export specific effector proteins crucial for its pathogenesis. The HSI-I virulence locus encodes for several proteins that has been proposed to participate in protein transport including the Hcp1 protein, which forms hexameric rings that assemble into nanotubes in vitro. Two Hcp1 paralogues have been identified in the P. aeruginosa genome, Hsp2 and Hcp3. Here, we present the structure of the Hcp3 protein from P. aeruginosa. The overall structure of the monomer resembles Hcp1 despite the lack of amino-acid sequence similarity between the two proteins. The monomers assemble into hexamers similar to Hcp1. However, instead of forming nanotubes in head-to-tail mode like Hcp1, Hcp3 stacks its rings in head-to-head mode forming double-ring structures.


Biochimica et Biophysica Acta | 1997

Cloning, sequencing, and expression of dnaK operon proteins from the thermophilic bacterium Thermus thermophilus

Jerzy Osipiuk; Andrzej Joachimiak

We propose that the dnaK operon of Thermus thermophilus HB8 is composed of three functionally linked genes: dnaK, grpE, and dnaJ. The dnaK and dnaJ gene products are most closely related to their cyanobacterial homologs. The DnaK protein sequence places T. thermophilus in the plastid Hsp70 subfamily. In contrast, the grpE translated sequence is most similar to GrpE from Clostridium acetobutylicum, a Gram-positive anaerobic bacterium. A single promoter region, with homology to the Escherichia coli consensus promoter sequences recognized by the sigma70 and sigma32 transcription factors, precedes the postulated operon. This promoter is heat-shock inducible. The dnaK mRNA level increased more than 30 times upon 10 min of heat shock (from 70 degrees C to 85 degrees C). A strong transcription terminating sequence was found between the dnaK and grpE genes. The individual genes were cloned into pET expression vectors and the thermophilic proteins were overproduced at high levels in E. coli and purified to homogeneity. The recombinant T. thermophilus DnaK protein was shown to have a weak ATP-hydrolytic activity, with an optimum at 90 degrees C. The ATPase was stimulated by the presence of GrpE and DnaJ. Another open reading frame, coding for ClpB heat-shock protein, was found downstream of the dnaK operon.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Structural and evolutionary relationships of “AT-less” type I polyketide synthase ketosynthases

Jeremy R. Lohman; Ming Ma; Jerzy Osipiuk; Boguslaw Nocek; Youngchang Kim; Changsoo Chang; Marianne E. Cuff; Jamey Mack; Lance Bigelow; Hui Li; Michael Endres; Gyorgy Babnigg; Andrzej Joachimiak; George N. Phillips; Ben Shen

Significance There are many differences in the sequences of ketosynthase (KS) domains from the well-studied type I polyketide synthases (PKSs) and the more recently discovered acyltransferase (AT)-less type I PKSs. The AT-less type I PKSs generate polyketides with a high degree of structural diversity, which stems from their evolution by horizontal gene transfer. In comparison, canonical type I PKSs evolve by gene duplication. The seven structures of AT-less type I PKS KSs reveal the molecular details surrounding the evolution of substrate specificity and structural diversity, and their overall differences with canonical type I PKS KSs. Understanding the mechanism of substrate specificity will allow reprogramming of the KS active sites to generate polyketide analogues by PKS and polyketide biosynthetic pathway engineering. Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs.


Molecular Systems Biology | 2016

Diverse mechanisms of metaeffector activity in an intracellular bacterial pathogen, Legionella pneumophila

Malene L. Urbanus; Andrew T. Quaile; Peter J. Stogios; Mariya Morar; Chitong Rao; Rosa Di Leo; Elena Evdokimova; Mandy H. Y. Lam; Christina Oatway; Marianne E. Cuff; Jerzy Osipiuk; Karolina Michalska; Boguslaw Nocek; Mikko Taipale; Alexei Savchenko; Alexander W. Ensminger

Pathogens deliver complex arsenals of translocated effector proteins to host cells during infection, but the extent to which these proteins are regulated once inside the eukaryotic cell remains poorly defined. Among all bacterial pathogens, Legionella pneumophila maintains the largest known set of translocated substrates, delivering over 300 proteins to the host cell via its Type IVB, Icm/Dot translocation system. Backed by a few notable examples of effector–effector regulation in L. pneumophila, we sought to define the extent of this phenomenon through a systematic analysis of effector–effector functional interaction. We used Saccharomyces cerevisiae, an established proxy for the eukaryotic host, to query > 108,000 pairwise genetic interactions between two compatible expression libraries of ~330 L. pneumophila‐translocated substrates. While capturing all known examples of effector–effector suppression, we identify fourteen novel translocated substrates that suppress the activity of other bacterial effectors and one pair with synergistic activities. In at least nine instances, this regulation is direct—a hallmark of an emerging class of proteins called metaeffectors, or “effectors of effectors”. Through detailed structural and functional analysis, we show that metaeffector activity derives from a diverse range of mechanisms, shapes evolution, and can be used to reveal important aspects of each cognate effectors function. Metaeffectors, along with other, indirect, forms of effector–effector modulation, may be a common feature of many intracellular pathogens—with unrealized potential to inform our understanding of how pathogens regulate their interactions with the host cell.


Molecular Microbiology | 2015

Crystal structure of Bacillus anthracis virulence regulator AtxA and effects of phosphorylated histidines on multimerization and activity

Troy G. Hammerstrom; Lori B. Horton; Michelle C. Swick; Andrzej Joachimiak; Jerzy Osipiuk; Theresa M. Koehler

The Bacillus anthracis virulence regulator AtxA controls transcription of the anthrax toxin genes and capsule biosynthetic operon. AtxA activity is elevated during growth in media containing glucose and CO2/bicarbonate, and there is a positive correlation between the CO2/bicarbonate signal, AtxA activity and homomultimerization. AtxA activity is also affected by phosphorylation at specific histidines. We show that AtxA crystallizes as a dimer. Distinct folds associated with predicted DNA‐binding domains (HTH1 and HTH2) and phosphoenolpyruvate: carbohydrate phosphotransferase system‐regulated domains (PRD1 and PRD2) are apparent. We tested AtxA variants containing single and double phosphomimetic (His→Asp) and phosphoablative (His→Ala) amino acid changes for activity in B. anthracis cultures and for protein–protein interactions in cell lysates. Reduced activity of AtxA H199A, lack of multimerization and activity of AtxAH379D variants, and predicted structural changes associated with phosphorylation support a model for control of AtxA function. We propose that (i) in the AtxA dimer, phosphorylation of H199 in PRD1 affects HTH2 positioning, influencing DNA‐binding; and (ii) phosphorylation of H379 in PRD2 disrupts dimer formation. The AtxA structure is the first reported high‐resolution full‐length structure of a PRD‐containing regulator, and can serve as a model for proteins of this family, especially those that link virulence to bacterial metabolism.

Collaboration


Dive into the Jerzy Osipiuk's collaboration.

Top Co-Authors

Avatar

Andrzej Joachimiak

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Boguslaw Nocek

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Marianne E. Cuff

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Frank R. Collart

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Hung Ton-That

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Changsoo Chang

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Chungyu Chang

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Gyorgy Babnigg

Argonne National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge