Jerzy W. Łazarewicz
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jerzy W. Łazarewicz.
Brain Research | 1978
Maria Dorota Majewska; Joanna Stroznajder; Jerzy W. Łazarewicz
The mitochondrial fraction obtained from brains of animals submitted to ischemia shows a decrease of phospholipid level, especially plasmalogens in the fraction of ethanolamine phospholipids and choline phospholipids. There appears simultaneously an increase of free radical oxidation processes of unsaturated fatty acids from these phospholipids. The peroxidation processes of mitochondrial lipids are stimulated by calcium ions and, to a smaller extent, by magnesium ions. Barbiturate anesthesia inhibits the peroxidation of fatty acids and increases the antioxidant abilities of the nervous tissue. Nembutal added in vitro remains without effect on the above processes. The effect of acetylcholine and the antioxidant ability of nervous tissue under barbiturate anesthesia with respect to ischemia are discussed.
Neurochemistry International | 2003
E Zieminska; Aleksandra Stafiej; Jerzy W. Łazarewicz
Hyperhomocysteinemia is a risk factor in neurodegeneration. It has been suggested that apart from disturbances in methylation processes, the mechanisms of this effect may include excitotoxicity mediated by the N-methyl-D-aspartate (NMDA) receptors. In this study we demonstrate that apart from NMDA receptors, also group I metabotropic glutamate receptors participate in acute homocysteine (Hcy)-induced neurotoxicity in cultured rat cerebellar granule neurones. Primary neuronal cultures were incubated for 30 min in the Mg(2+)-free ionic medium containing homocysteine and other ligands, and neurodegenerative changes were assessed 24h later using propidium iodide staining. D,L-Homocysteine given alone appeared to be a weak neurotoxin, with EC(50) of 17.4mM, whereas EC(50) for L-glutamate was 0.17 mM. Addition of 50 microM glycine enhanced homocysteine neurotoxicity, and only that portion of neurotoxicity was abolished by 0.5 microM MK-801, an uncompetitive NMDA receptor antagonist. The net stimulation of 45Ca uptake by granule cells incubated in the presence of 25 mM D,L-homocysteine with 50 microM glycine was only 3% of the net uptake evoked by 1mM glutamate. Application of an antagonist of group I metabotropic glutamate receptors (mGluRs) LY367385 at 25 and 250 microM concentrations, induced a dose-dependent partial neuroprotection, whereas given together with MK-801 completely prevented neurotoxicity. In the absence of glycine, LY367385 and MK-801 given alone failed to induce neuroprotection, while applied together completely prevented homocysteine neurotoxicity. Agonist of group I mGluRs, 10 trans-azetidine-2,3-dicarboxylic acid (t-ADA) induced significant neurotoxicity. This study shows for the first time that acute homocysteine-induced neurotoxicity is mediated both by group I mGluRs and NMDA receptors, and is not accompanied by massive influx of extracellular Ca(2+) to neurones.
Neurochemistry International | 2009
Małgorzata Kajta; Dorota Makarewicz; E Zieminska; Danuta Jantas; Helena Domin; Władysław Lasoń; Andrzej Kutner; Jerzy W. Łazarewicz
Several in vivo and in vitro studies have demonstrated the neuroprotective potential of pretreatment with 1alpha,25-dihydroxyvitamin D3 (calcitriol). The aim of the present study was to determine the effectiveness of calcitriol administered in vivo after a brain ischemic episode in the rat model of perinatal asphyxia, or when co-applied with or without delay during 24-h exposure of mouse hippocampal, neocortical and cerebellar neuronal cultures to glutamate on their 7th and 12th day in vitro (7 DIV and 12 DIV, respectively). Calcitriol was also administered after acute exposure of rat cerebellar neurons to glutamate. In 7-day-old rat pups subjected to hypoxia-ischemia, acute application of calcitriol in a single dose of 2 microg/kg, 30 min after termination of the insult, or subchronic, 7-day post-treatment with calcitriol, effectively reduced brain damage. The level of neuroprotection exceeded that achieved by hypoxic preconditioning used as the reference neuroprotective method. The results of in vitro experiments revealed the ability of calcitriol to reduce excitotoxicity in a manner dependent on the origin of the neuronal cells, their stage of maturation in culture and the duration of exposure to the excitotoxic insult before calcitriol application. Calcitriol was neuroprotective when it was administered together with glutamate or even after a delay of up to 6h during 24-h excitotoxic challenge of hippocampal and neocortical, but not cerebellar neuronal cultures. Application of calcitriol to cultured cerebellar granule neurons after acute exposure to glutamate was ineffective. In 12 DIV hippocampal cell cultures, 50 nM calcitriol inhibited glutamate-induced caspase-3 activity, while only 100 nM concentrations were effective in 7 DIV cultures. We ascribe the protective effects of calcitriol to the rapid modulation of mechanisms that are instrumental in the direct anti-apoptotic, neuroprotective action of this compound.
Resuscitation | 1988
Ryszard Pluta; E Salinska; M Puka; Aleksandra Stafiej; Jerzy W. Łazarewicz
The effect of cerebral ischemia on extracellular amino acids and calcium content and on the permeability of the blood-brain barrier was studied by in vivo dialysis of rabbit hippocampus. This was combined with physiological and neurophysiological measurements. It was found that immediately after 15-min ischemia extracellular concentrations of glutamate, aspartate and taurine increased 3-, 2- and 6-fold, respectively, whereas a maximal, 7-fold increase of phosphoethanolamine and persistent elevation of glutamate were observed 45 min after ischemia. Extracellular calcium concentration, monitored with 45Ca2+, increased by 10% during the initial phase of ischemia, and decreased to approx. 74% of the basal level 10 min after ischemia. Recovery of extracellular calcium content was not attained until 45 min of recirculation, at which time the first signs of return of bioelectric activity were noted. Increased permeability of the blood-brain barrier to fluoresceine developed immediately after ischemia and persisted up to 2 h of recirculation. The obtained results are discussed in reference to the noted simultaneity of changes in extracellular excitatory amino acids and calcium concentrations and of brain bioelectric activity during and after ischemia. Causal relations between these effects are suggested.
Neurochemistry International | 2006
Dorota Makarewicz; M Duszczyk; Roman Gadamski; Wojciech Danysz; Jerzy W. Łazarewicz
The neuroprotective potential of mGluR1 and mGluR5 antagonists (group I), EMQMCM and MTEP, respectively was studied using the 3 min forebrain ischemia model in Mongolian gerbils and the hypoxia-ischemia model in 7-day-old rats. Hypoxia-ischemia was induced by unilateral carotid occlusion followed by 75 min exposure to hypoxia (7.3% O(2) in N(2)), forebrain ischemia in gerbils was evoked by bilateral common carotid artery occlusion. The postischemic rectal body temperature in rat pups or brain temperature of gerbils was measured. The drugs were administered i.p. three times every 2 h after the insult, each time in equal doses of 1.25, 2.5 or 5.0 mg/kg. After 2 weeks brain damage was evaluated as weight decrease of the ipsilateral hemisphere in the rat pups or damage to CA1 pyramids in the gerbil hippocampus. The results demonstrated a dose dependent neuroprotection in both ischemic models by EMQMCM, while MTEP was neuroprotective only in the gerbil model of forebrain ischemia. EMQMCM reduced postischemic hyperthermia in gerbils. Thus, the antagonists of mGluR1 and mGluR5 show differential neuroprotective ability in two models of brain ischemia. Postischemic hypothermia may be partially involved in the mechanism of neuroprotection following EMQMCM in gerbils.
Neurosignals | 2002
Dmitry G. Semenov; M. O. Samoilov; Jerzy W. Łazarewicz
In this study, we investigated the effects of NMDA receptor antagonists on calcium transients induced by a single 2-min preconditioning anoxia (PA) in rat olfactory cortical slices, and on the ability of PA to prevent pathological calcium overload induced by subsequent 10-min test anoxia (TA). Relative changes in the intracellular Ca2+ concentration (Cai) and in the level of Ca2+ bound to intracellular hydrophobic domains (Cab) were monitored using fura-2 and chlortetracycline, respectively. Our results confirmed that TA induces prominent long-lasting increases in Cai and Cab, reflecting cellular calcium overload. It was found that PA produces moderate increases in both Ca2+ pools and prevents Ca2+ overload induced by TA carried out 90 min later. Calcium transients and the protective effects of PA were significantly suppressed in slices treated with NMDA receptor antagonists during and 30 min after PA. These results indicate that moderate activation of the NMDA receptors participates in the mechanism of the PA-induced anoxic tolerance of cortical neurons.
Neurochemistry International | 2003
Dorota Makarewicz; E Zieminska; Jerzy W. Łazarewicz
Dantrolene is an inhibitor of a skeletal muscle subtype of ryanodine receptors that stabilizes intracellular calcium concentrations and exerts neuroprotective effects in neurons submitted to excitotoxic challenges. The mechanisms of dantrolene-induced neuroprotection are not clear. In this study, using a model of cultured rat cerebellar granule neurons, we demonstrated that dantrolene inhibits NMDA-evoked 45Ca uptake, indicating that this drug may inhibit the activity of NMDA receptor channels. Primary neuronal cultures were incubated for 10 min in Mg(2+)-free ionic medium with NMDA and 45Ca in the presence of different concentrations of dantrolene, then radioactivity in neurons was measured by liquid scintillation spectroscopy. The results demonstrated that dantrolene, applied at micromolar concentrations, inhibits NMDA-evoked 45Ca uptake in neurons in a dose-dependent manner. DMSO, a vehicle to dantrolene, in concentrations used in this study had no effect on NMDA-evoked 45Ca uptake. These results, indicating that dantrolene inhibits activation of the NMDA receptors, might at least partially explain the mechanisms of a dantrolene-evoked protection of neurons against excitotoxicity mediated by agonists of NMDA receptors.
Experimental Neurology | 1991
E Salinska; Ryszard Pluta; Małgorzata Puka; Jerzy W. Łazarewicz
To evaluate the participation of excitatory amino acid receptors sensitive to N-methyl-D-aspartate (NMDA) in ischemia-evoked redistribution of Ca2+ ions from the extra- to the intracellular compartment of the hippocampus, 2-amino-5-phosphonovalerate (APV), a specific antagonist of NMDA receptors, was administered to the rabbit hippocampus through a dialysis probe before, during, and after complete reversible 15-min cerebral ischemia. Microdialysis of the hippocampus allowed us to determine the changes in extracellular calcium and amino acid concentrations and to monitor the permeability of the blood-brain barrier (BBB) to fluorescein. Moreover, EEG and general physiological parameters were registered. APV significantly reduced the ischemic drop of calcium and increased the taurine and phosphoethanolamine content in the extracellular compartment, whereas changes in concentrations of other amino acids and BBB permeability were not modified. Local administration of APV also improved the recovery of EEG activity after ischemia. Inhibition by APV of ischemia-induced calcium redistribution in the hippocampus suggests a major role of NMDA receptors in the influx of calcium to hippocampal neurons during cerebral ischemia.
Pharmacological Reports | 2010
Magdalena Kuszczyk; Marta Słomka; Lucyna Antkiewicz-Michaluk; E Salinska; Jerzy W. Łazarewicz
The aim of this study was to establish the antagonistic effects of 1-methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) on NMDA receptors and its neuroprotective abilities on primary cultures of rat cerebellar granule cells exposed for 30 min to 250 or 100 μM glutamate. Neuronal viability was tested after 24 h with propidium iodide or calcein/ethidium homodimer-1 staining. The neuroprotective potential of 100, 250 or 500 μM 1MeTIQ was compared with established uncompetitive NMDA receptor antagonists, 0.5 μM MK-801, or 5 μM memantine. These substances were applied for 30 min either together with glutamate, 24 or 48 h before glutamate, or 0.5 h, 1 h and 3 h after exposure to the excitotoxin. The results demonstrated that MK-801, memantine and 500 μM 1MeTIQ induced an almost complete neuroprotection when co-applied with glutamate, but lower concentrations of 1MeTIQ were slightly less effective. Similar effects for 1MeTIQ and the established NMDA receptor antagonists were observed in the pretreatment experiments, even with a 48-h lag between the application of the tested substances and the excitotoxic challenge. In the post-treatment experiments, MK-801 and memantine and 500 μM 1MeTIQ applied up to 3 h after the exposure to glutamate significantly reduced the excitotoxic lesion, but 1MeTIQ in lower concentrations was ineffective. These results indicate that 1MeTIQ shares neuroprotective abilities with established uncompetitive NMDA receptor antagonists, which suggests that its inhibitory effect on NMDA receptors plays a key role in its anti-excitotoxic activity. Moreover, our data disclose a new mechanism of 1MeTIQ-evoked neuroprotection based on the induction of neuronal tolerance to excitotoxicity.
Neurotoxicology | 2012
Wojciech Hilgier; Jerzy W. Łazarewicz; Lidia Strużyńska; Małgorzata Frontczak-Baniewicz; Jan Albrecht
Aroclor 1254 is a mixture of polychlorinated biphenyls (PCBs), a class of environmental toxins which cause a wide spectrum of neurotoxic effects. Learning and memory deficits are the profound effects of PCBs which may be related to hippocampal dysfunction. To get insight into the underlying neurochemical mechanisms, we employed the microdialysis technique to investigate the effect of repeated exposure of adult male Wistar rats to Aroclor 1254 (10mg/kg b.w., daily, ig., for 14days), on the neurochemical parameters of NMDA receptor-mediated glutamatergic signaling in the hippocampus in vivo assessed using the microdialysis technique. The results demonstrated that exposure to Aroclor 1254, which was associated with substantial neuronal damage and loss in the hippocampus, markedly decreased the NMDA-induced extracellular accumulation of newly loaded (45)CaCl(2), cGMP and glutamate, and reduced the basal content of the NO precursor, arginine, indicating inhibition of the NMDA/NO/cGMP pathway. Aroclor 1254 exposure also decreased the basal microdialysate content of glutamate and glutamine, which may cause inadequate supply of the neurotransmitter glutamate, while the level of two other neuroactive amino acids, aspartate or taurine was not affected by the exposure. The results underscore neuronal lesion and inhibition of NMDA receptor-mediated glutamatergic signaling in hippocampus as a potential major contributor to the cognitive deficits associated with exposure to PCB.