Jerzy Wiśniewski
Wrocław Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jerzy Wiśniewski.
European Journal of Pharmacology | 2010
Olga Wesołowska; Jerzy Wiśniewski; Kamila Środa; Agnieszka Krawczenko; Aleksandra Bielawska-Pohl; Maria Paprocka; Danuta Duś; Krystyna Michalak
Flavonoids with hydrophobic e.g. prenyl substituents might constitute the promising candidates for multidrug resistance (MDR) reversal agents. The interaction of 8-prenylnaringenin (8-isopentenylnaringenin), a potent phytoestrogen isolated from common hop (Humulus lupulus), with two multidrug resistance-associated ABC transporters of cancer cells, P-glycoprotein and MRP1, has been studied for the first time. Functional test based on the transport of fluorescent substrate BCECF revealed that the flavonoid strongly inhibited MRP1 transport activity in human erythrocytes (IC(50)=5.76+/-1.80muM). Expression of MDR-related transporters in drug-sensitive (LoVo) and doxorubicin-resistant (LoVo/Dx) human colon adenocarcinoma cell lines was characterized by RT-PCR and immunochemical methods and elevated expression of P-glycoprotein in resistant cells was found to be the main difference between these two cell lines. By means of flow cytometry it was shown that 8-prenylnaringenin significantly increased the accumulation of rhodamine 123 in LoVo/Dx cells. Doxorubicin accumulation in both LoVo and LoVo/Dx cells observed by confocal microscopy was also altered in the presence of 8-prenylnaringenin. However, the presence of the studied compound did not increase doxorubicin cytotoxicity to LoVo/Dx cells. It was concluded that 8-prenylnaringenin was not able to modulate MDR in human adenocarcinoma cell line in spite of the ability to inhibit both P-glycoprotein and MRP1 activities. To our best knowledge, this is the first report of 8-prenylnaringenin interaction with clinically important ABC transporters.
Cellular & Molecular Biology Letters | 2009
Olga Wesołowska; Andrzej B. Hendrich; Barbara Łania-Pietrzak; Jerzy Wiśniewski; Joseph Molnar; Imre Ocsovszki; Krystyna Michalak
The expression of transmembrane transporter multidrug resistance-associated protein 1 (MRP1) confers the multidrug-resistant phenotype (MDR) on cancer cells. Since the activity of the other MDR transporter, P-glycoprotein, is sensitive to membrane perturbation, we aimed to check whether the changes in lipid bilayer properties induced by flavones (apigenin, acacetin) and flavonols (morin, myricetin) were related to their MRP1 inhibitory activity. All the flavonoids inhibited the efflux of MRP1 fluorescent substrate from human erythrocytes and breast cancer cells. Morin was also found to stimulate the ATPase activity of erythrocyte ghosts. All flavonoids intercalated into phosphatidylcholine bilayers as judged by differential scanning calorimetry and fluorescence spectroscopy with the use of two carbocyanine dyes. The model of an intramembrane localization for flavones and flavonols was proposed. No clear relationship was found between the membrane-perturbing activity of flavonoids and their potency to inhibit MRP1. We concluded that mechanisms other than perturbation of the lipid phase of membranes were responsible for inhibition of MRP1 by the flavonoids.
Cancer Immunology, Immunotherapy | 2017
Malgorzata Krzystek-Korpacka; Marek Zawadzki; Katarzyna Neubauer; Iwona Bednarz-Misa; Sabina Górska; Jerzy Wiśniewski; Wojciech Witkiewicz; Andrzej Gamian
Interleukin (IL)-7 is a cytokine essential for protective immunity, and it is considered as a promising agent for cancer immunotherapy. Recent studies, however, appear to associate IL-7 with aggressiveness of solid tumors. The IL-7 has been less studied in colorectal cancer (CRC) and conditions associated with increased risk of CRC development. To explore IL-7 status in bowel diseases, it was measured immunofluorometrically in 431 individuals (110 with CRC) by using Luminex platform. A level of IL-7 in CRC patients was significantly higher than in controls, did not differ from those with adenomas, but was lower than in both active and inactive inflammatory bowel disease (IBD) cases. In CRC, IL-7 was higher in patients with lymph node and distant metastases and with tumors located in right colon. In adenomas, IL-7 elevation was associated exclusively with villous growth pattern, while in IBD, circulating IL-7 reflected clinical activity of Crohn’s disease and ulcerative colitis. Systemic TNFα, IL-10, and PDGF-BB were independent predictors of circulating IL-7. In summary, our study is the first to demonstrate IL-7 elevation in CRC in association with metastatic disease and tumor location. Both associations should be considered when designing IL-7-based immunotherapies for CRC. Further studies on IL-7 functionality in CRC are necessary.
Biomedical Chromatography | 2017
Jerzy Wiśniewski; Mariusz G. Fleszar; Joanna Piechowicz; Malgorzata Krzystek-Korpacka; Angelika Chachaj; Andrzej Szuba; Leszek Masłowski; Wojciech Witkiewicz; Andrzej Gamian
Nitric oxide (NO) is a regulatory molecule involved in many biological processes. NO is produced by nitric oxide synthase by conversion of l-arginine to l-citrulline. l-Arginine methylated derivatives, asymmetric and symmetric dimethylarginines (asymmetric dimethylarginine, ADMA, and symmetric dimethylarginine, SDMA), regulate l-arginine availability and the activity of nitric oxide synthase. As such, they have been frequently investigated as potential biomarkers in pathologies associated with dysfunctions in NO synthesis. Here, we present a new multistep analytical methodology based on liquid chromatography combined with mass spectrometry for the accurate identification of l-arginine, l-citrulline, ADMA and SDMA. Compounds are measured as stable 2,3,4,5,6-pentafluorobenzoyl chloride derivatives, which allows for simultaneous analysis of all compounds through chromatographic separation of ADMA and SDMA using a reverse-phase column. Serum aliquots (100 μL) were spiked with isotope-labeled internal standards and sodium carbonate buffer. The derivatization process was carried out at 25°C for 10 minu using pentafluorobenzoyl chloride as derivatization reagent. Calibration demonstrated good linearity (R2 = 0.9966-0.9986) for all derivatized compounds. Good accuracy (94.67-99.91%) and precision (1.92-11.8%) were observed for the quality control samples. The applicability of the method was evaluated in a cohort of angiological patients and healthy volunteers. The method discerned significantly lower l-arginine and l-citrulline in angiologic patients. This robust and fast LC-ESI-MS method may be a useful tool in quantitative analysis of l-arginine, ADMA, SDMA and l-citrulline.
Phytomedicine | 2019
Tomasz Sozański; Alicja Z. Kucharska; Jerzy Wiśniewski; Mariusz G. Fleszar; Andrzej Rapak; Agnieszka Gomulkiewicz; Piotr Dziegiel; Jan Magdalan; Beata Nowak; Dorota Szumny; Agnieszka Matuszewska; Narcyz Piórecki; Adam Szeląg; Małgorzata Trocha
BACKGROUND Although fruit and vegetable-rich diets have beneficial effects on cardiovascular diseases, we have little knowledge of the impact of fruits and their constituents, iridoids and anthocyanins, on the l-arginine-ADMA-DDAH pathway. Our previous study demonstrated the modulation of those factors by the oral administration of the cornelian cherry fruit. HYPOTHESIS/PURPOSE We have assessed the effects of the oral administration of two main constituents isolated from the cornelian cherry fruit, iridoid loganic acid and anthocyanins, on l-arginine, its derivatives (ADMA, SDMA), metabolites (DMA, l-citrulline), and the hepatic DDAH activity and its isoform expression in rabbits fed a high-cholesterol diet. We have also analyzed eNOS expression in the thoracic aorta as well as the redox status in blood. STUDY DESIGN In the present study, we used an animal model of diet induced atherosclerosis. For 60 days, white New Zealand rabbits were fed a standard diet, a 1% cholesterol enriched diet, or concomitantly with the investigated substances. l-arginine, ADMA, SDMA, DMA, and l-citrulline were assessed using the LC-MS/MS method. DDAH activity and redox parameters were analyzed spectrophotometrically. DDAH1 and DDAH2 isoform expressions were assessed by western blotting, mRNA expression of eNOS was quantified by real-time PCR. RESULTS We demonstrated that the administration of loganic acid (20 mg/kg b.w.), and to a lesser extent of anthocyanins (10 mg/kg b.w.), caused an increase in the l-arginine level and the l-arginine/ADMA ratio. Also, both substances decreased ADMA, DMA, and l-citrulline, but not SDMA levels. Anthocyanins, but not loganic acid, enhanced the activity of DDAH in the liver. Anthocyanins also significantly enhanced both DDAH1 and DDAH2 expression, while loganic acid to a lesser extent enhanced DDAH1 but not DDAH2 expression. Both loganic acid and anthocyanins pronouncedly increased mRNA expression of eNOS in thoracic aortas. Both loganic acid and anthocyanins reversed the blood glutathione level depleted by dietary cholesterol. Cholesterol feeding decreased the blood GPx level, and the change was not reversed by anthocyanins or loganic acid. We did not observe any significant differences in the blood levels of MDA or SOD among the groups. CONCLUSION Iridoids and anthocyanins may modulate the l-arginine-ADMA pathway in subjects fed a high-cholesterol diet.
PLOS ONE | 2018
Angelika Chachaj; Jerzy Wiśniewski; Justyna Rybka; Aleksandra Butrym; Monika Biedroń; Malgorzata Krzystek-Korpacka; Mariusz G. Fleszar; Maciej Karczewski; Tomasz Wróbel; Grzegorz Mazur; Andrzej Gamian; Andrzej Szuba
The study was designed to determine the associations of asymmetric (ADMA) and symmetric (SDMA) dimethylarginines plasma concentrations with all-cause mortality in patients with hematological malignancies. 33 patients with acute myeloid leukemia (AML), 31 patients with non-Hodgkin’s lymphoma (nHL), 32 patients with chronic lymphocytic leukemia (CLL) and 48 patients without malignancy were enrolled into the study. Each patient was followed until death or for at least 14.5 months (range: 14.5–53). Median ADMA and SDMA were significantly elevated in AML, nHL and CLL compared to controls (ADMA: 1.36, 1.24, 1.03, 0.55 μmol/l respectively, p<0.0001; SDMA: 0.86, 0.76, 0.71, 0.52 μmol/l respectively, p<0.0001). High ADMA and SDMA were associated with increased risk for all-cause mortality in CLL group (Hazard ratio (HR) for ADMA: 3.05, 95% CI:1.58–5.88, p = 0.001; HR for SDMA: 4.71, 95% CI:1.91–11.58, p = 0.001). Our study suggests that ADMA and SDMA could be novel prognostic factors for all-cause mortality in CLL patients.
Biochemistry and biophysics reports | 2018
Jadwiga Pietkiewicz; Regina Danielewicz; Iwona Bednarz-Misa; Ireneusz Ceremuga; Jerzy Wiśniewski; Magdalena Mierzchala-Pasierb; Agnieszka Bronowicka-Szydełko; Edmund Ziomek; Andrzej Gamian
Human α- and β-enolases are highly homologous enzymes, difficult to differentiate immunologically. In this work, we describe production, purification and properties of anti-α- and anti-β-enolase polyclonal antibodies. To raise antibodies, rabbits were injected with enolase isoenzymes that were purified from human kidney (α-enolase) and skeletal muscle (β-enolase). Selective anti-α- and anti-β-enolase antibodies were obtained by affinity chromatography on either α- or β-enolase-Sepharose columns. On Western blots, antibodies directed against human β-enolase, did not react with human α-isoenzyme, but recognized pig and rat β-enolase. To determine what makes these antibodies selective bioinformatic tools were used to predict conformational epitopes for both enolase isoenzymes. Three predicted epitopes were mapped to the same regions in both α- and β-enolase. Peptides corresponding to predicted epitopes were synthesized and tested against purified antibodies. One of the pin-attached peptides representing α-enolase epitope (the C-terminal portion of the epitope 3 - S262PDDPSRYISPDQ273) reacted with anti-α-enolase, while the other also derived from the α-enolase sequence (epitope 2 - N193VIKEKYGKDATN205) was recognized by anti-β-enolase antibodies. Interestingly, neither anti-α- nor anti-β-antibody reacted with a peptide corresponding to the epitope 2 in β-enolase (G194VIKAKYGKDATN206). Further analysis showed that substitution of E197 with A in α-enolase epitope 2 peptide lead to 70% loss of immunological activity, while replacement of A198 with E in peptide representing β-enolase epitope 2, caused 67% increase in immunological activity. Our results suggest that E197 is essential for preserving immunologically active conformation in epitope 2 peptidic homolog, while it is not crucial for this epitopes antigenic activity in native β-enolase.
Anticancer Research | 2016
Jerzy Wiśniewski; Olga Wesołowska; Kamila Środa-Pomianek; Maria Paprocka; Aleksandra Bielawska-Pohl; Agnieszka Krawczenko; Noélia Duarte; Maria-José U. Ferreira; Danuta Duś; Krystyna Michalak
Schizophrenia Research | 2016
Błażej Misiak; Jerzy Wiśniewski; Mariusz G. Fleszar; Dorota Frydecka
Chromatographia | 2018
Mariusz G. Fleszar; Jerzy Wiśniewski; Malgorzata Krzystek-Korpacka; Błażej Misiak; Dorota Frydecka; Joanna Piechowicz; Andrzej Gamian