Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jesper B. Birk is active.

Publication


Featured researches published by Jesper B. Birk.


The FASEB Journal | 2005

Effects of α-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle

Sebastian B. Jørgensen; Jørgen F. P. Wojtaszewski; Benoit Viollet; Fabrizio Andreelli; Jesper B. Birk; Ylva Hellsten; Peter Schjerling; Sophie Vaulont; P. Darrell Neufer; Erik A. Richter; Henriette Pilegaard

We tested the hypothesis that 5′AMP‐activated protein kinase (AMPK) plays an important role in regulating the acute, exercise‐induced activation of metabolic genes in skeletal muscle, which were dissected from whole‐body α2‐ and α1‐AMPK knockout (KO) and wild‐type (WT) mice at rest, after treadmill running (90 min), and in recovery. Running increased α1‐AMPK kinase activity, phosphorylation (P) of AMPK, and acetyl‐CoA carboxylase (ACC)β in α2‐WT and α2‐KO muscles and increased α2‐AMPK kinase activity in α2‐WT. In α2‐KO muscles, AMPK‐P and ACCβ‐P were markedly lower compared with α2‐WT. However, in α1‐WT and α1‐KO muscles, AMPK‐P and ACCβ‐P levels were identical at rest and increased similarly during exercise in the two genotypes. The α2‐KO decreased peroxisome‐proliferator‐activated receptor γ coactivator (PGC)‐1α, uncoupling protein‐3 (UCP3), and hexokinase II (HKII) transcription at rest but did not affect exercise‐induced transcription. Exercise increased the mRNA content of PGC‐1α, Forkhead box class O (FOXO)1, HKII, and pyruvate dehydrogenase kinase 4 (PDK4) similarly in α2‐WT and α2‐KO mice, whereas glucose transporter GLUT 4, carnitine palmitoyltransferase 1 (CPTI), lipoprotein lipase, and UCP3 mRNA were unchanged by exercise in both genotypes. CPTI mRNA was lower in α2‐KO muscles than in α2‐WT muscles at all time‐points. In α1‐WT and α1‐KO muscles, running increased the mRNA content of PGC‐1α and FOXOl similarly. The α2‐KO was associated with lower muscle adenosine 5′‐triphosphate content, and the inosine monophosphate content increased substantially at the end of exercise only in α2‐KO muscles. In addition, subcutaneous injection of 5‐aminoimidazole‐4‐carboxamide‐1‐β‐4‐ribofuranoside (AICAR) increased the mRNA content of PGC‐1α, HKII, FOXO1, PDK4, and UCP3, and α2‐KO abolished the AICAR‐induced increases in PGC‐1α and HKII mRNA. In conclusion, KO of the α2‐ but not the α1‐AMPK isoform markedly diminished AMPK activation during running. Nevertheless, exercise‐induced activation of the investigated genes in mouse skeletal muscle was not impaired in α1‐ or α2‐AMPK KO muscles. Although it cannot be ruled out that activation of the remaining α‐isoform is sufficient to increase gene activation during exercise, the present data do not support an essential role of AMPK in regulating exercise‐induced gene activation in skeletal muscle.


The Journal of Physiology | 2006

Predominant α2/β2/γ3 AMPK activation during exercise in human skeletal muscle

Jesper B. Birk; Jørgen F. P. Wojtaszewski

5′AMP‐activated protein kinase (AMPK) is a key regulator of cellular metabolism and is regulated in muscle during exercise. We have previously established that only three of 12 possible AMPK α/β/γ‐heterotrimers are present in human skeletal muscle. Previous studies describe discrepancies between total AMPK activity and regulation of its target acetyl‐CoA‐carboxylase (ACC)β. Also, exercise training decreases expression of the regulatory γ3 AMPK subunit and attenuates α2 AMPK activity during exercise. We hypothesize that these observations reflect a differential regulation of the AMPK heterotrimers. We provide evidence here that only the α2/β2/γ3 subunit is phosphorylated and activated during high‐intensity exercise in vivo. The activity associated with the remaining two AMPK heterotrimers, α1/β2/γ1 and α2/β2/γ1, is either unchanged (20 min, 80% maximal oxygen uptake ) or decreased (30 or 120 s sprint‐exercise). The differential activity of the heterotrimers leads to a total α‐AMPK activity, that is decreased (30 s trial), unchanged (120 s trial) and increased (20 min trial). AMPK activity associated with the α2/β2/γ3 heterotrimer was strongly correlated to γ3‐associated α‐Thr‐172 AMPK phosphorylation (r2= 0.84, P < 0.001) and to ACCβ Ser‐221 phosphorylation (r2= 0.65, P < 0.001). These data single out the α2/β2/γ3 heterotrimer as an important actor in exercise‐regulated AMPK signalling in human skeletal muscle, probably mediating phosphorylation of ACCβ.


The Journal of Physiology | 2005

5′AMP activated protein kinase expression in human skeletal muscle: effects of strength training and type 2 diabetes

Jørgen F. P. Wojtaszewski; Jesper B. Birk; Christian Frøsig; Mads Holten; Henriette Pilegaard; Flemming Dela

Strength training enhances insulin sensitivity and represents an alternative to endurance training for patients with type 2 diabetes (T2DM). The 5′AMP‐activated protein kinase (AMPK) may mediate adaptations in skeletal muscle in response to exercise training; however, little is known about adaptations within the AMPK system itself. We investigated the effect of strength training and T2DM on the isoform expression and the heterotrimeric composition of the AMPK in human skeletal muscle. Ten patients with T2DM and seven healthy subjects strength trained (T) one leg for 6 weeks, while the other leg remained untrained (UT). Muscle biopsies were obtained before and after the training period. Basal AMPK activity and protein/mRNA expression of both catalytic (α1 and α2) and regulatory (β1, β2, γ1, γ2a, γ2b and γ3) AMPK isoforms were independent of T2DM, whereas the protein content of α1 (+16%), β2 (+14%) and γ1 (+29%) was higher and the γ3 content was lower (−48%) in trained compared with untrained muscle (all P < 0.01). The majority of α protein co‐immunoprecipitated with β2 and α2/β2 accounted for the majority of these complexes. γ3 was only associated with α2 and β2 subunits, and accounted for ∼20% of all α2/β2 complexes. The remaining α2/β2 and the α1/β2 complexes were associated with γ1. The trimer composition was unaffected by T2DM, whereas training induced a shift from γ3‐ to γ1‐containing trimers. The data question muscular AMPK as a primary cause of T2DM whereas the maintained function in patients with T2DM makes muscular AMPK an obvious therapeutic target. In human skeletal muscle only three of 12 possible AMPK trimer combinations exist, and the expression of the subunit isoforms is susceptible to moderate strength training, which may influence metabolism and improve energy homeostasis in trained muscle.


Diabetes | 2008

Impaired Insulin-Stimulated Phosphorylation of Akt and AS160 in Skeletal Muscle of Women With Polycystic Ovary Syndrome Is Reversed by Pioglitazone Treatment

Kurt Højlund; Dorte Glintborg; Nicoline R. Andersen; Jesper B. Birk; Jonas T. Treebak; Christian Frøsig; Henning Beck-Nielsen; Jørgen F. P. Wojtaszewski

OBJECTIVE— Insulin resistance in skeletal muscle is a major risk factor for type 2 diabetes in women with polycystic ovary syndrome (PCOS). However, the molecular mechanisms underlying skeletal muscle insulin resistance and the insulin-sensitizing effect of thiazolidinediones in PCOS in vivo are less well characterized. RESEARCH DESIGN AND METHODS— We determined molecular mediators of insulin signaling to glucose transport in skeletal muscle biopsies of 24 PCOS patients and 14 matched control subjects metabolically characterized by euglycemic-hyperinsulinemic clamps and indirect calorimetry, and we examined the effect of 16 weeks of treatment with pioglitazone in PCOS patients. RESULTS— Impaired insulin-mediated total (Rd) oxidative and nonoxidative glucose disposal (NOGD) was paralleled by reduced insulin-stimulated Akt phosphorylation at Ser473 and Thr308 and AS160 phosphorylation in muscle of PCOS patients. Akt phosphorylation at Ser473 and Thr308 correlated positively with Rd and NOGD in the insulin-stimulated state. Serum free testosterone was inversely related to insulin-stimulated Rd and NOGD in PCOS. Importantly, the pioglitazone-mediated improvement in insulin-stimulated glucose metabolism, which did not fully reach normal levels, was accompanied by normalization of insulin-mediated Akt phosphorylation at Ser473 and Thr308 and AS160 phosphorylation. AMPK activity and phosphorylation were similar in the two groups and did not respond to pioglitazone in PCOS patients. CONCLUSIONS— Impaired insulin signaling through Akt and AS160 in part explains insulin resistance at the molecular level in skeletal muscle in PCOS, and the ability of pioglitazone to enhance insulin sensitivity involves improved signaling through Akt and AS160. Moreover, our data provide correlative evidence that hyperandrogenism in PCOS may contribute to insulin resistance.


Diabetes | 2011

Lipid-Induced Insulin Resistance Affects Women Less Than Men and Is Not Accompanied by Inflammation or Impaired Proximal Insulin Signaling

Louise D. Høeg; Kim A. Sjøberg; Jacob Jeppesen; Thomas E. Jensen; Christian Frøsig; Jesper B. Birk; Bruno Bisiani; Natalie Hiscock; Henriette Pilegaard; Jørgen F. P. Wojtaszewski; Erik A. Richter; Bente Kiens

OBJECTIVE We have previously shown that overnight fasted women have higher insulin-stimulated whole body and leg glucose uptake despite a higher intramyocellular triacylglycerol concentration than men. Women also express higher muscle mRNA levels of proteins related to lipid metabolism than men. We therefore hypothesized that women would be less prone to lipid-induced insulin resistance. RESEARCH DESIGN AND METHODS Insulin sensitivity of whole-body and leg glucose disposal was studied in 16 young well-matched healthy men and women infused with intralipid or saline for 7 h. Muscle biopsies were obtained before and during a euglycemic-hyperinsulinemic clamp (1.42 mU · kg−1 · min−1). RESULTS Intralipid infusion reduced whole-body glucose infusion rate by 26% in women and 38% in men (P < 0.05), and insulin-stimulated leg glucose uptake was reduced significantly less in women (45%) than men (60%) after intralipid infusion. Hepatic glucose production was decreased during the clamp similarly in women and men irrespective of intralipid infusion. Intralipid did not impair insulin or AMPK signaling in muscle and subcutaneous fat, did not cause accumulation of muscle lipid intermediates, and did not impair insulin-stimulated glycogen synthase activity in muscle or increase plasma concentrations of inflammatory cytokines. In vitro glucose transport in giant sarcolemmal vesicles was not decreased by acute exposure to fatty acids. Leg lactate release was increased and respiratory exchange ratio was decreased by intralipid. CONCLUSIONS Intralipid infusion causes less insulin resistance of muscle glucose uptake in women than in men. This insulin resistance is not due to decreased canonical insulin signaling, accumulation of lipid intermediates, inflammation, or direct inhibition of GLUT activity. Rather, a higher leg lactate release and lower glucose oxidation with intralipid infusion may suggest a metabolic feedback regulation of glucose metabolism.


Diabetes | 2006

PDH-E1α Dephosphorylation and Activation in Human Skeletal Muscle During Exercise: Effect of Intralipid Infusion

Henriette Pilegaard; Jesper B. Birk; Massimo Sacchetti; Marina Mourtzakis; D. Graham Hardie; Greg Stewart; P. Darrell Neufer; Bengt Saltin; Gerrit van Hall; Jørgen F. P. Wojtaszewski

To investigate pyruvate dehydrogenase (PDH)-E1α subunit phosphorylation and whether free fatty acids (FFAs) regulate PDH activity, seven subjects completed two trials: saline (control) and intralipid/heparin (intralipid). Each infusion trial consisted of a 4-h rest followed by a 3-h two-legged knee extensor exercise at moderate intensity. During the 4-h resting period, activity of PDH in the active form (PDHa) did not change in either trial, yet phosphorylation of PDH-E1α site 1 (PDH-P1) and site 2 (PDH-P2) was elevated in the intralipid compared with the control trial. PDHa activity increased during exercise similarly in the two trials. After 3 h of exercise, PDHa activity remained elevated in the intralipid trial but returned to resting levels in the control trial. Accordingly, in both trials PDH-P1 and PDH-P2 decreased during exercise, and the decrease was more marked during intralipid infusion. Phosphorylation had returned to resting levels at 3 h of exercise only in the control trial. Thus, an inverse association between PDH-E1α phosphorylation and PDHa activity exists. Short-term elevation in plasma FFA at rest increases PDH-E1α phosphorylation, but exercise overrules this effect of FFA on PDH-E1α phosphorylation leading to even greater dephosphorylation during exercise with intralipid infusion than with saline.


The Journal of Physiology | 2010

Exercise‐induced TBC1D1 Ser237 phosphorylation and 14‐3‐3 protein binding capacity in human skeletal muscle

Christian Frøsig; Christian Pehmøller; Jesper B. Birk; Erik A. Richter; Jørgen F. P. Wojtaszewski

TBC1D1 is a Rab‐GTPase activating protein involved in regulation of GLUT4 translocation in skeletal muscle. We here evaluated exercise‐induced regulation of TBC1D1 Ser237 phosphorylation and 14‐3‐3 protein binding capacity in human skeletal muscle. In separate experiments healthy men performed all‐out cycle exercise lasting either 30 s, 2 min or 20 min. After all exercise protocols, TBC1D1 Ser237 phosphorylation increased (∼70–230%, P < 0.005), with the greatest response observed after 20 min of cycling. Interestingly, capacity of TBC1D1 to bind 14‐3‐3 protein showed a similar pattern of regulation, increasing 60–250% (P < 0.001). Furthermore, recombinant 5′AMP‐activated protein kinase (AMPK) induced both Ser237 phosphorylation and 14‐3‐3 binding properties on human TBC1D1 when evaluated in vitro. To further characterize the role of AMPK as an upstream kinase regulating TBC1D1, extensor digitorum longus muscle (EDL) from whole body α1 or α2 AMPK knock‐out and wild‐type mice were stimulated to contract in vitro. In wild‐type and α1 knock‐out mice, contractions resulted in a similar ∼100% increase (P < 0.001) in Ser237 phosphorylation. Interestingly, muscle of α2 knock‐out mice were characterized by reduced protein content of TBC1D1 (∼50%, P < 0.001) as well as in basal and contraction‐stimulated (∼60%, P < 0.001) Ser237 phosphorylation, even after correction for the reduced TBC1D1 protein content. This study shows that TBC1D1 is Ser237 phosphorylated and 14‐3‐3 protein binding capacity is increased in response to exercise in human skeletal muscle. Furthermore, we show that the catalytic α2 AMPK subunit is the main (but probably not the only) donor of AMPK activity regulating TBC1D1 Ser237 phosphorylation in mouse EDL muscle.


The Journal of Physiology | 2014

Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle.

Jonas T. Treebak; Christian Pehmøller; Jonas M. Kristensen; Rasmus Kjøbsted; Jesper B. Birk; Peter Schjerling; Erik A. Richter; Laurie J. Goodyear; Jørgen F. P. Wojtaszewski

Phosphorylation signature patterns on TBC1D1 and TBC1D4 proteins in the insulin–glucose pathway were investigated in human skeletal muscle in response to physiological insulin and exercise. In response to postprandial increase in insulin, Akt phosphorylation of T308 and S473 correlated significantly with sites on TBC1D1 (T596) and TBC1D4 (S318, S341, S704). Exercise induced phosphorylation of TBC1D1 (S237, T596) that correlated significantly with activity of the α2/β2/γ3 AMPK trimer, whereas TBC1D4 phosphorylation (S341, S704) with exercise correlated with activity of the α2/β2/γ1 AMPK trimer. TBC1D1 phosphorylation signatures with exercise/muscle contraction were comparable between human and mouse skeletal muscle, and AMPK regulated phosphorylation of these sites in mouse muscle, whereas contraction and exercise elicited different TBC1D4 phosphorylation patterns in mouse compared with human muscle. Our results show differential phosphorylation of TBC1D1 and TBC1D4 in response to physiological stimuli in human skeletal muscle and indicate that Akt and AMPK may be upstream kinases.


Journal of Lipid Research | 2011

Contraction-induced skeletal muscle FAT/CD36 trafficking and FA uptake is AMPK independent

Jacob Jeppesen; Peter H. Albers; Adam J. Rose; Jesper B. Birk; Peter Schjerling; Nicolas Dzamko; Gregory R. Steinberg; Bente Kiens

The aim of this study was to investigate the molecular mechanisms regulating FA translocase CD36 (FAT/CD36) translocation and FA uptake in skeletal muscle during contractions. In one model, wild-type (WT) and AMP-dependent protein kinase kinase dead (AMPK KD) mice were exercised or extensor digitorum longus (EDL) and soleus (SOL) muscles were contracted, ex vivo. In separate studies, FAT/CD36 translocation and FA uptake in response to muscle contractions were investigated in the perfused rat hindlimb. Exercise induced a similar increase in skeletal muscle cell surface membrane FAT/CD36 content in WT (+34%) and AMPK KD (+37%) mice. In contrast, 5-aminoimidazole-4-carboxamide ribonucleoside only induced an increase in cell surface FAT/CD36 content in WT (+29%) mice. Furthermore, in the perfused rat hindlimb, muscle contraction induced a rapid (1 min, +15%) and sustained (10 min, +24%) FAT/CD36 relocation to cell surface membranes. The increase in cell surface FAT/CD36 protein content with muscle contractions was associated with increased FA uptake, both in EDL and SOL muscle from WT and AMPK KD mice and in the perfused rat hindlimb. This suggests that AMPK is not essential in regulation of FAT/CD36 translocation and FA uptake in skeletal muscle during contractions. However, AMPK could be important in regulation of FAT/CD36 distribution in other physiological situations.


Diabetes | 2015

Prior AICAR stimulation increases insulin sensitivity in mouse skeletal muscle in an AMPK-dependent manner

Rasmus Kjøbsted; Jonas T. Treebak; Joachim Fentz; Louise Lantier; Benoit Viollet; Jesper B. Birk; Peter Schjerling; Marie Björnholm; Juleen R. Zierath; Jørgen F. P. Wojtaszewski

An acute bout of exercise increases glucose uptake in skeletal muscle by an insulin-independent mechanism. In the period after exercise, insulin sensitivity to increased glucose uptake is enhanced. The molecular mechanisms underpinning this phenomenon are poorly understood but appear to involve an increased cell surface abundance of GLUT4. While increased proximal insulin signaling does not seem to mediate this effect, elevated phosphorylation of TBC1D4, a downstream target of both insulin (Akt) and exercise (AMPK) signaling, appears to play a role. The main purpose of this study was to determine whether AMPK activation increases skeletal muscle insulin sensitivity. We found that prior AICAR stimulation of wild-type mouse muscle increases insulin sensitivity to stimulate glucose uptake. However, this was not observed in mice with reduced or ablated AMPK activity in skeletal muscle. Furthermore, prior AICAR stimulation enhanced insulin-stimulated phosphorylation of TBC1D4 at Thr649 and Ser711 in wild-type muscle only. These phosphorylation events were positively correlated with glucose uptake. Our results provide evidence to support that AMPK activation is sufficient to increase skeletal muscle insulin sensitivity. Moreover, TBC1D4 phosphorylation may facilitate the effect of prior AMPK activation to enhance glucose uptake in response to insulin.

Collaboration


Dive into the Jesper B. Birk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bente Kiens

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kurt Højlund

Odense University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge