Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jesper B. Moeller is active.

Publication


Featured researches published by Jesper B. Moeller.


Nature | 2017

The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation

Christoph S. N. Klose; Tanel Mahlakõiv; Jesper B. Moeller; Lucille C. Rankin; Anne-Laure Flamar; Hiroki Kabata; Laurel A. Monticelli; Saya Moriyama; Gregory Putzel; Nikolai Rakhilin; Xiling Shen; Evi Kostenis; Gabriele M. König; Takashi Senda; Dustin Carpenter; Donna L. Farber; David Artis

The type 2 cytokines interleukin (IL)-4, IL-5, IL-9 and IL-13 have important roles in stimulating innate and adaptive immune responses that are required for resistance to helminth infection, promotion of allergic inflammation, metabolic homeostasis and tissue repair. Group 2 innate lymphoid cells (ILC2s) produce type 2 cytokines, and although advances have been made in understanding the cytokine milieu that promotes ILC2 responses, how ILC2 responses are regulated by other stimuli remains poorly understood. Here we demonstrate that ILC2s in the mouse gastrointestinal tract co-localize with cholinergic neurons that express the neuropeptide neuromedin U (NMU). In contrast to other haematopoietic cells, ILC2s selectively express the NMU receptor 1 (NMUR1). In vitro stimulation of ILC2s with NMU induced rapid cell activation, proliferation, and secretion of the type 2 cytokines IL-5, IL-9 and IL-13 that was dependent on cell-intrinsic expression of NMUR1 and Gαq protein. In vivo administration of NMU triggered potent type 2 cytokine responses characterized by ILC2 activation, proliferation and eosinophil recruitment that was associated with accelerated expulsion of the gastrointestinal nematode Nippostrongylus brasiliensis or induction of lung inflammation. Conversely, worm burden was higher in Nmur1−/− mice than in control mice. Furthermore, use of gene-deficient mice and adoptive cell transfer experiments revealed that ILC2s were necessary and sufficient to mount NMU-elicited type 2 cytokine responses. Together, these data indicate that the NMU–NMUR1 neuronal signalling circuit provides a selective mechanism through which the enteric nervous system and innate immune system integrate to promote rapid type 2 cytokine responses that can induce anti-microbial, inflammatory and tissue-protective type 2 responses at mucosal sites.


Journal of Immunology | 2009

Characterization of FIBCD1 as an Acetyl Group-Binding Receptor That Binds Chitin

Anders Schlosser; Theresa Thomsen; Jesper B. Moeller; Ole Haagen Nielsen; Ida Tornøe; Jan Mollenhauer; Søren K. Moestrup; Uffe Holmskov

Chitin is a highly acetylated compound and the second most abundant biopolymer in the world next to cellulose. Vertebrates are exposed to chitin both through food ingestion and when infected with parasites, and fungi and chitin modulate the immune response in different directions. We have identified a novel homotetrameric 55-kDa type II transmembrane protein encoded by the FIBCD1 gene and highly expressed in the gastrointestinal tract. The ectodomain of FIBCD1 is characterized by a coiled-coil region, a polycationic region and C-terminal fibrinogen-related domain that by disulfide linkage assembles the protein into tetramers. Functional analysis showed a high-affinity and calcium-dependent binding of acetylated components to the fibrinogen domain, and a function in endocytosis was demonstrated. Screening for ligands revealed that the FIBCD1 is a high-affinity receptor for chitin and chitin fragments. FIBCD1 may play an important role in controlling the exposure of intestine to chitin and chitin fragments, which is of great relevance for the immune defense against parasites and fungi and for immune response modulation.


Journal of Biological Chemistry | 2010

The Recognition Unit of FIBCD1 Organizes into a Noncovalently Linked Tetrameric Structure and Uses a Hydrophobic Funnel (S1) for Acetyl Group Recognition

Theresa Thomsen; Jesper B. Moeller; Anders Schlosser; Grith Lykke Sørensen; Søren K. Moestrup; Nades Palaniyar; Russell Wallis; Jan Mollenhauer; Uffe Holmskov

We have recently identified FIBCD1 (Fibrinogen C domain containing 1) as a type II transmembrane endocytic receptor located primarily in the intestinal brush border. The ectodomain of FIBCD1 comprises a coiled coil, a polycationic region, and a C-terminal FReD (fibrinogen-related domain) that assembles into disulfide-linked homotetramers. The FIBCD1-FReD binds Ca2+ dependently to acetylated structures like chitin, N-acetylated carbohydrates, and amino acids. FReDs are present in diverse innate immune pattern recognition proteins including the ficolins and horseshoe crab TL5A. Here, we use chemical cross-linking, combined with analytical ultracentrifugation and electron microscopy of the negatively stained recombinant FIBCD1-FReD to show that it assembles into noncovalent tetramers in the absence of the coiled coil. We use surface plasmon resonance, carbohydrate binding, and pulldown assays combined with site-directed mutagenesis to define the binding site involved in the interaction of FIBCD1 with acetylated structures. We show that mutations of central residues (A432V and H415G) in the hydrophobic funnel (S1) abolish the binding of FIBCD1 to acetylated bovine serum albumin and chitin. The double mutations (D393N/D395A) at the putative calcium-binding site reduce the ability of FIBCD1 to bind ligands. We conclude that the FReDs of FIBCD1 forms noncovalent tetramers and that the acetyl-binding site of FReDs of FIBCD1 is homologous to that of tachylectin 5A and M-ficolin but not to the FReD of L-ficolin. We suggest that the spatial organization of the FIBCD1-FReDs determine the molecular pattern recognition specificity and subsequent biological functions.


Immunobiology | 2014

Induction of innate immunity by Aspergillus fumigatus cell wall polysaccharides is enhanced by the composite presentation of chitin and beta-glucan

Lalit Kumar Dubey; Jesper B. Moeller; Anders Schlosser; Grith Lykke Sørensen; Uffe Holmskov

Chitin and β-glucan are conserved throughout evolution in the fungal cell wall and are the most common polysaccharides in fungal species. Together, these two polysaccharides form a structural scaffold that is essential for the survival of the fungus. In the present study, we demonstrated that Aspergillus fumigatus alkali-insoluble cell wall fragments (AIF), composed of chitin linked covalently to β-glucan, induced enhanced immune responses when compared with individual cell wall polysaccharides. Intranasal administration of AIF induced eosinophil and neutrophil recruitment, chitinase activity, TNF-α and TSLP production in mice lungs. Selective destruction of chitin or β-glucan from AIF significantly reduced eosinophil and neutrophil recruitment as well as chitinase activity and cytokine expression by macrophages, indicating the synergistic effect of the cell wall polysaccharides when presented together as a composite PAMP. We also showed that these cell wall polysaccharides induced chitin-specific IgM in mouse serum. Our in vivo and in vitro data indicate that chitin and β-glucan play important roles in activating innate immunity when presented as composite cell wall PAMPs.


Science | 2018

β2-adrenergic receptor–mediated negative regulation of group 2 innate lymphoid cell responses

Saya Moriyama; Jonathan R. Brestoff; Anne Laure Flamar; Jesper B. Moeller; Christoph S. N. Klose; Lucille C. Rankin; Naomi A. Yudanin; Laurel A. Monticelli; Gregory Putzel; Hans Reimer Rodewald; David Artis

An off switch for helminth immunity Group 2 innate lymphoid cells (ILC2s) are involved in responses to helminths, viruses, and allergens. Moriyama et al. found that ILC2s interact with the nervous system to modulate helminth immunity. ILC2s from the small intestine expressed the β2-adrenergic receptor (β2AR), which normally interacts with the neurotransmitter epinephrine. Inactivating β2AR resulted in lower helminth burden and more ILC2s, eosinophils, and type 2 cytokine production in mice. Conversely, treatment of helminth-infected mice with a β2AR agonist enhanced worm burden and reduced proliferation of ILC2s. Thus, β2AR negatively regulates ILC2-driven protective immunity. Science, this issue p. 1056 A neuronally derived regulatory circuit limits ILC2-dependent type 2 inflammation in the mouse intestine during helminth infection. The type 2 inflammatory response is induced by various environmental and infectious stimuli. Although recent studies identified group 2 innate lymphoid cells (ILC2s) as potent sources of type 2 cytokines, the molecular pathways controlling ILC2 responses are incompletely defined. Here we demonstrate that murine ILC2s express the β2-adrenergic receptor (β2AR) and colocalize with adrenergic neurons in the intestine. β2AR deficiency resulted in exaggerated ILC2 responses and type 2 inflammation in intestinal and lung tissues. Conversely, β2AR agonist treatment was associated with impaired ILC2 responses and reduced inflammation in vivo. Mechanistically, we demonstrate that the β2AR pathway is a cell-intrinsic negative regulator of ILC2 responses through inhibition of cell proliferation and effector function. Collectively, these data provide the first evidence of a neuronal-derived regulatory circuit that limits ILC2-dependent type 2 inflammation.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2016

MFAP4 Promotes Vascular Smooth Muscle Migration, Proliferation and Accelerates Neointima Formation

Anders Schlosser; Bartosz Pilecki; Line Ea Hemstra; Karin Kejling; Gudlaug B. Kristmannsdottir; Helle Wulf-Johansson; Jesper B. Moeller; Ernst-Martin Füchtbauer; Ole Haagen Nielsen; Katrine Lindequist Kirketerp-Møller; Lalit Kumar Dubey; Pernille B. Lærkegaard Hansen; Jane Stubbe; Christoph Wrede; Jan Hegermann; Matthias Ochs; Birgit Rathkolb; Anja Schrewe; Raffi Bekeredjian; Eckhard Wolf; Valérie Gailus-Durner; Helmut Fuchs; Martin Hrabě de Angelis; Jes Sanddal Lindholt; Uffe Holmskov; Grith Lykke Sørensen

Objective— Arterial injury stimulates remodeling responses that, when excessive, lead to stenosis. These responses are influenced by integrin signaling in vascular smooth muscle cells (VSMCs). Microfibrillar-associated protein 4 (MFAP4) is an integrin ligand localized to extracellular matrix fibers in the vascular wall. The role of MFAP4 in vascular biology is unknown. We aimed to test the hypothesis that MFAP4 would enhance integrin-dependent VSMC activation. Approach and Results— We produced Mfap4-deficient (Mfap4 −/− ) mice and performed carotid artery ligation to explore the role of MFAP4 in vascular biology in vivo. Furthermore, we investigated the effects of MFAP4 in neointimal formation ex vivo and in primary VSMC and monocyte cultures in vitro. When challenged with carotid artery ligation, Mfap4 −/− mice exhibited delayed neointimal formation, accompanied by early reduction in the number of proliferating medial and neointimal cells, as well as infiltrating leukocytes. Delayed neointimal formation was associated with decreased cross-sectional area of ligated Mfap4 −/− carotid arteries resulting in lumen narrowing 28 days after ligation. MFAP4 blockade prohibited the formation of neointimal hyperplasia ex vivo. Moreover, we demonstrated that MFAP4 is a ligand for integrin &agr;V&bgr;3 and mediates VSMC phosphorylation of focal adhesion kinase, migration, and proliferation in vitro. MFAP4-dependent VSMC activation was reversible by treatment with MFAP4-blocking antibodies and inhibitors of focal adhesion kinase and downstream kinases. In addition, we showed that MFAP4 promotes monocyte chemotaxis in integrin &agr;V&bgr;3–dependent manner. Conclusions— MFAP4 regulates integrin &agr;V&bgr;3–induced VSMC proliferation and migration, as well as monocyte chemotaxis, and accelerates neointimal hyperplasia after vascular injury.


Journal of Biological Chemistry | 2016

Characterization of Microfibrillar-Associated Protein 4 (MFAP4) as a Tropoelastin- and Fibrillin-Binding Protein Involved in Elastic Fiber Formation

Bartosz Pilecki; Anne Trommelholt Holm; Anders Schlosser; Jesper B. Moeller; Alexander P. Wohl; Alexandra V. Zuk; Stefanie E. Heumüller; Russell Wallis; Søren K. Moestrup; Gerhard Sengle; Uffe Holmskov; Grith Lykke Sørensen

MFAP4 (microfibrillar-associated protein 4) is an extracellular glycoprotein found in elastic fibers without a clearly defined role in elastic fiber assembly. In the present study, we characterized molecular interactions between MFAP4 and elastic fiber components. We established that MFAP4 primarily assembles into trimeric and hexameric structures of homodimers. Binding analysis revealed that MFAP4 specifically binds tropoelastin and fibrillin-1 and -2, as well as the elastin cross-linking amino acid desmosine, and that it co-localizes with fibrillin-1-positive fibers in vivo. Site-directed mutagenesis disclosed residues Phe241 and Ser203 in MFAP4 as being crucial for type I collagen, elastin, and tropoelastin binding. Furthermore, we found that MFAP4 actively promotes tropoelastin self-assembly. In conclusion, our data identify MFAP4 as a new ligand of microfibrils and tropoelastin involved in proper elastic fiber organization.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2015

Characterization of spontaneous air space enlargement in mice lacking microfibrillar-associated protein 4

Anne Trommelholt Holm; Helle Wulf-Johansson; Svend Hvidsten; Patricia Troest Jorgensen; Anders Schlosser; Bartosz Pilecki; Maria Ormhøj; Jesper B. Moeller; Claus Johannsen; Christina Baun; Thomas Emil Andersen; Jan Philipp Schneider; Jan Hegermann; Matthias Ochs; Alexander Götz; Holger Schulz; Martin Hrabě de Angelis; Jørgen Vestbo; Uffe Holmskov; Grith Lykke Sørensen

Microfibrillar-associated protein 4 (MFAP4) is localized to elastic fibers in blood vessels and the interalveolar septa of the lungs and is further present in bronchoalveolar lavage. Mfap4 has been previously suggested to be involved in elastogenesis in the lung. We tested this prediction and aimed to characterize the pulmonary function changes and emphysematous changes that occur in Mfap4-deficient (Mfap4(-/-)) mice. Significant changes included increases in total lung capacity and compliance, which were evident in Mfap4(-/-) mice at 6 and 8 mo but not at 3 mo of age. Using in vivo breath-hold gated microcomputed tomography (micro-CT) in 8-mo-old Mfap4(-/-) mice, we found that the mean density of the lung parenchyma was decreased, and the low-attenuation area (LAA) was significantly increased by 14% compared with Mfap4(+/+) mice. Transmission electron microscopy (TEM) did not reveal differences in the organization of elastic fibers, and there was no difference in elastin content, but a borderline significant increase in elastin mRNA expression in 3-mo-old mice. Stereological analysis showed that alveolar surface density in relation to the lung parenchyma and total alveolar surface area inside of the lung were both significantly decreased in Mfap4(-/-) mice by 25 and 15%, respectively. The data did not support an essential role of MFAP4 in pulmonary elastic fiber organization or content but indicated increased turnover in young Mfap4(-/-) mice. However, Mfap4(-/-) mice developed a spontaneous loss of lung function, which was evident at 6 mo of age, and moderate air space enlargement, with emphysema-like changes.


Journal of Biological Chemistry | 2014

Crystal structure of the tetrameric fibrinogen-like recognition domain of fibrinogen C domain containing 1 (FIBCD1) protein.

Annette K. Shrive; Jesper B. Moeller; I. Burns; Jenny M. Paterson; Amy J. Shaw; Anders Schlosser; Grith Lykke Sørensen; Trevor J. Greenhough; Uffe Holmskov

Background: FIBCD1 is a tetrameric plasma membrane protein that uses a fibrinogen-like recognition domain (FReD) for pattern recognition of acetyl groups on chitin. Results: The x-ray structure of the FIBCD1 FReD reveals how FIBCD1 binds acetylated and sulfated molecules. Conclusion: FReD domains combine versatility with conservation to recognize their targets. Significance: The structure suggests how FIBCD1 binds acetylated pathogen-associated molecular patterns (PAMPS) and endogenous glycosaminoglycans. The high resolution crystal structures of a recombinant fragment of the C-terminal fibrinogen-like recognition domain of FIBCD1, a vertebrate receptor that binds chitin, have been determined. The overall tetrameric structure shows similarity in structure and aggregation to the horseshoe crab innate immune protein tachylectin 5A. The high affinity ligand N-acetylmannosamine (ManNAc) binds in the S1 site, predominantly via the acetyl group with the oxygen and acetamide nitrogen hydrogen-bonded to the protein and the methyl group inserted into a hydrophobic pocket. The binding of the ManNAc pyranose ring differs markedly between the two independent subunits, but in all structures the binding of the N-acetyl group is conserved. In the native structure, a crystal contact results in one of the independent protomers binding the first GlcNAc of the Asn340 N-linked glycan on the other independent protomer. In the ligand-bound structure this GlcNAc is replaced by the higher affinity ligand ManNAc. In addition, a sulfate ion has been modeled into the electron density at a location similar to the S3 binding site in L-ficolin, whereas in the native structure an acetate ion has been placed in the S1 N-acetyl binding site, and a sulfate ion has been placed adjacent to this site. These ion binding sites are ideally placed to receive the N-acetyl and sulfate groups of sulfated GalNAc residues of glycosaminoglycans such as chondroitin and dermatan sulfate. Together, these structures give insight into important determinants of ligand selectivity, demonstrating versatility in recognition and binding while maintaining conservation in N-acetyl and calcium binding.


Journal of Immunology | 2012

CD163-L1 Is an Endocytic Macrophage Protein Strongly Regulated by Mediators in the Inflammatory Response

Jesper B. Moeller; Marianne Jensby Nielsen; Martin Parnov Reichhardt; Anders Schlosser; Grith Lykke Sørensen; Ole Haagen Nielsen; Ida Tornøe; Jørn Grønlund; Maria E Nielsen; Jan Stener Jørgensen; Ole Nørregaard Jensen; Jan Mollenhauer; Søren K. Moestrup; Uffe Holmskov

CD163-L1 belongs to the group B scavenger receptor cysteine-rich family of proteins, where the CD163-L1 gene arose by duplication of the gene encoding the hemoglobin scavenger receptor CD163 in late evolution. The current data demonstrate that CD163-L1 is highly expressed and colocalizes with CD163 on large subsets of macrophages, but in contrast to CD163 the expression is low or absent in monocytes and in alveolar macrophages, glia, and Kupffer cells. The expression of CD163-L1 increases when cultured monocytes are M-CSF stimulated to macrophages, and the expression is further increased by the acute-phase mediator IL-6 and the anti-inflammatory mediator IL-10 but is suppressed by the proinflammatory mediators IL-4, IL-13, TNF-α, and LPS/IFN-γ. Furthermore, we show that CD163-L1 is an endocytic receptor, which internalizes independently of cross-linking through a clathrin-mediated pathway. Two cytoplasmic splice variants of CD163-L1 are differentially expressed and have different subcellular distribution patterns. Despite its many similarities to CD163, CD163-L1 does not possess measurable affinity for CD163 ligands such as the haptoglobin–hemoglobin complex or various bacteria. In conclusion, CD163-L1 exhibits similarity to CD163 in terms of structure and regulated expression in cultured monocytes but shows clear differences compared with the known CD163 ligand preferences and expression pattern in the pool of tissue macrophages. We postulate that CD163-L1 functions as a scavenger receptor for one or several ligands that might have a role in resolution of inflammation.

Collaboration


Dive into the Jesper B. Moeller's collaboration.

Top Co-Authors

Avatar

Uffe Holmskov

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Grith Lykke Sørensen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bartosz Pilecki

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Jan Mollenhauer

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Lalit Kumar Dubey

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Anne Trommelholt Holm

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Helle Wulf-Johansson

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Søren K. Moestrup

University of Southern Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge