Jesper Bartholin Bruhn
Technical University of Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jesper Bartholin Bruhn.
International Journal of Food Microbiology | 2002
Lone Gram; Lars Ravn; Maria Rasch; Jesper Bartholin Bruhn; Allan Beck Christensen; Michael Givskov
Food spoilage is a complex process and excessive amounts of foods are lost due to microbial spoilage even with modern day preservation techniques. Despite the heterogeneity in raw materials and processing conditions, the microflora that develops during storage and in spoiling foods can be predicted based on knowledge of the origin of the food, the substrate base and a few central preservation parameters such as temperature, atmosphere, a(w) and pH. Based on such knowledge, more detailed sensory, chemical and microbiological analysis can be carried out on the individual products to determine the actual specific spoilage organism. Whilst the chemical and physical parameters are the main determining factors for selection of spoilage microorganisms, a level of refinement may be found in some products in which the interactive behavior of microorganisms may contribute to their growth and/or spoilage activity. This review gives three such examples. We describe the competitive advantage of Pseudomonas spp. due to the production of iron-chelating siderophores, the generation of substrates for spoilage reactions by one organism from another microorganism (so-called metabiosis) and the up-regulation of phenotypes potentially involved in spoilage through cell-to-cell communication. In particular, we report for the first time the widespread occurrence of N-acyl homoserine lactones (AHL) in stored and spoiling fresh foods and we discuss the potential implications for spoilage and food preservation.
Applied and Environmental Microbiology | 2005
Jesper Bartholin Bruhn; Kristian Fog Nielsen; Mette Hjelm; Michael Adsetts Edberg Hansen; José Bresciani; Stefan Schulz; Lone Gram
ABSTRACT Roseobacter strain 27-4 has been isolated from a turbot larval rearing unit and is capable of reducing mortality in turbot egg yolk sac larvae. Here, we demonstrate that the supernatant of Roseobacter 27-4 is lethal to the larval pathogens Vibrio anguillarum and Vibrio splendidus in a buffer system and inhibited their growth in marine broth. Liquid chromatography (LC) with both UV spectral detection and high-resolution mass spectrometry (HR-MS) identified the known antibacterial compound thiotropocin or its closely related precursor tropodithietic acid in the bioactive fractions. Antibacterial activity correlated with the appearance of a brownish pigment and was only formed in marine broth under static growth conditions. A thick biofilm of multicellular star-shaped aggregated cells formed at the air-liquid interface under static growth conditions. Here, the bioactive compound was the base peak in the LC-UV chromatograms of the extracts where it constituted 15% of the total peak area. Aerated conditions results in 10-fold-higher cell yield, however, cultures were nonpigmented, did not produce antibacterial activity, and grew as single cells. Production of antibacterial compounds may be quorum regulated, and we identified the acylated homoserine lactone (3-hydroxy-decanoyl homoserine lactone) from cultures of Roseobacter 27-4 using LC-HR-MS. The signal molecule was primarily detected in stagnant cultures. Roseobacter 27-4 grew between 10 and 30°C but died rapidly at 37°C. Also, the antibacterial compounds was sensitive to heat and was inactivated at 37°C in less than 2 days and at 25°C in 8 days. Using Roseobacter 27-4 as a probiotic culture will require that is be established in stagnant or adhered conditions and, due to the temperature sensitivity of the active compound, constant production must be ensured.
Marine Biotechnology | 2010
Lone Gram; Jette Melchiorsen; Jesper Bartholin Bruhn
The purpose of the present study was to isolate marine culturable bacteria with antibacterial activity and hence a potential biotechnological use. Seawater samples (244) and 309 swab samples from biotic or abiotic surfaces were collected on a global Danish marine research expedition (Galathea 3). Total cell counts at the seawater surface were 5 × 105 to 106 cells/ml, of which 0.1–0.2% were culturable on dilute marine agar (20°C). Three percent of the colonies cultured from seawater inhibited Vibrio anguillarum, whereas a significantly higher proportion (13%) of colonies from inert or biotic surfaces was inhibitory. It was not possible to relate a specific kind of eukaryotic surface or a specific geographic location to a general high occurrence of antagonistic bacteria. Five hundred and nineteen strains representing all samples and geographic locations were identified on the basis of partial 16S rRNA gene sequence homology and belonged to three major groups: Vibrionaceae (309 strains), Pseudoalteromonas spp. (128 strains), and the Roseobacter clade (29 strains). Of the latter, 25 strains were identified as Ruegeria mobilis or pelagia. When re-testing against V. anguillarum, only 409 (79%) retained some level of inhibitory activity. Many strains, especially Pseudoalteromonas spp. and Ruegeria spp., also inhibited Staphylococcus aureus. The most pronounced antibacterial strains were pigmented Pseudoalteromonas strains and Ruegeria spp. The inhibitory, pigmented Pseudoalteromonas were predominantly isolated in warmer waters from swabs of live or inert surfaces. Ruegeria strains were isolated from all ocean areas except for Arctic and Antarctic waters and inhibitory activity caused by production of tropodithietic acid.
Applied and Environmental Microbiology | 2008
Haifeng Geng; Jesper Bartholin Bruhn; Kristian Fog Nielsen; Lone Gram; Robert Belas
ABSTRACT The symbiotic association between the roseobacter Silicibacter sp. strain TM1040 and the dinoflagellate Pfiesteria piscicida involves bacterial chemotaxis to dinoflagellate-produced dimethylsulfoniopropionate (DMSP), DMSP demethylation, and ultimately a biofilm on the surface of the host. Biofilm formation is coincident with the production of an antibiotic and a yellow-brown pigment. In this report, we demonstrate that the antibiotic is a sulfur-containing compound, tropodithietic acid (TDA). Using random transposon insertion mutagenesis, 12 genes were identified as critical for TDA biosynthesis by the bacteria, and mutation in any one of these results in a loss of antibiotic activity (Tda−) and pigment production. Unexpectedly, six of the genes, referred to as tdaA-F, could not be found on the annotated TM1040 genome and were instead located on a previously unidentified plasmid (ca. 130 kb; pSTM3) that exhibited a low frequency of spontaneous loss. Homologs of tdaA and tdaB from Silicibacter sp. strain TM1040 were identified by mutagenesis in another TDA-producing roseobacter, Phaeobacter sp. strain 27-4, which also possesses two large plasmids (ca. 60 and ca. 70 kb, respectively), and tda genes were found by DNA-DNA hybridization in 88% of a diverse collection of nine roseobacters with known antibiotic activity. These data suggest that roseobacters may use a common pathway for TDA biosynthesis that involves plasmid-encoded proteins. Using metagenomic library databases and a bioinformatics approach, differences in the biogeographical distribution between the critical TDA synthesis genes were observed. The implications of these results to roseobacter survival and the interaction between TM1040 and its dinoflagellate host are discussed.
Applied and Environmental Microbiology | 2004
Jesper Bartholin Bruhn; Allan Beck Christensen; Lars Flodgaard; Kristian Fog Nielsen; Thomas Ostenfeld Larsen; Michael Givskov; Lone Gram
ABSTRACT Quorum-sensing (QS) signals (N-acyl homoserine lactones [AHLs]) were extracted and detected from five commercially produced vacuum-packed meat samples. Ninety-six AHL-producing bacteria were isolated, and 92 were identified as Enterobacteriaceae. Hafnia alvei was the most commonly identified AHL-producing bacterium. Thin-layer chromatographic profiles of supernatants from six H. alvei isolates and of extracts from spoiling meat revealed that the major AHL species had an Rf value and shape similar to N-3-oxo-hexanoyl homoserine lactone (OHHL). Liquid chromatography-mass spectrometry (MS) (high-resolution MS) analysis confirmed the presence of OHHL in pure cultures of H. alvei. Vacuum-packed meat spoiled at the same rate when inoculated with the H. alvei wild type compared to a corresponding AHL-lacking mutant. Addition of specific QS inhibitors to the AHL-producing H. alvei inoculated in meat or to naturally contaminated meat did not influence the spoilage of vacuum-packed meat. An extracellular protein of approximately 20 kDa produced by the H. alvei wild-type was not produced by the AHL-negative mutant but was restored in the mutant when complemented by OHHL, thus indicating that AHLs do have a regulatory role in H. alvei. Coinoculation of H. alvei wild-type with an AHL-deficient Serratia proteamaculans B5a, in which protease secretion is QS regulated, caused spoilage of liquid milk. By contrast, coinoculation of AHL-negative strains of H. alvei and S. proteamaculans B5a did not cause spoilage. In conclusion, AHL and AHL-producing bacteria are present in vacuum-packed meat during storage and spoilage, but AHL does not appear to influence the spoilage of this particular type of conserved meat. Our data indicate that AHL-producing H. alvei may induce food quality-relevant phenotypes in other bacterial species in the same environment. H. alvei may thus influence spoilage of food products in which Enterobacteriaceae participate in the spoilage process.
Applied and Environmental Microbiology | 2005
Jesper Bartholin Bruhn; Birte Fonnesbech Vogel; Lone Gram
ABSTRACT Listeria monocytogenes can be isolated from a range of food products and may cause food-borne outbreaks or sporadic cases of listeriosis. L. monocytogenes is divided into three genetic lineages and 13 serotypes. Strains of three serotypes (1/2a, 1/2b, and 4b) are associated with most human cases of listeriosis. Of these, strains of serotypes 1/2b and 4b belong to lineage 1, whereas strains of serotype 1/2a and many other strains isolated from foods belong to lineage 2. L. monocytogenes is isolated from foods by selective enrichment procedures and from patients by nonselective methods. The aim of the present study was to investigate if the selective enrichment procedure results in a true representation of the subtypes of L. monocytogenes present in a sample. Eight L. monocytogenes strains (four lineage 1 strains and four lineage 2 strains) and one Listeria innocua strain grew with identical growth rates in the nonselective medium brain heart infusion (BHI), but differed in their growth rate in the selective medium University of Vermont medium I (UVM I). When coinoculated in UVM I, some strains completely outgrew other strains. This outcome was dependent on the lineage of L. monocytogenes rather than the individual growth rate of the strains. When inoculated at identical cell densities in UVM I, L. innocua outcompeted L. monocytogenes lineage 1 strains but not lineage 2 strains. In addition, lineage 2 L. monocytogenes strains outcompeted lineage 1 L. monocytogenes strains in all combinations tested, indicating a bias in strains selected by the enrichment procedures. Bias also occurred when coinoculating two lineage 2 or lineage 1 strains; however, it did not appear to correlate with origin (clinical versus food). Identical coinoculation experiments in BHI suggested that the selective compounds in UVM I and II influenced this bias. The results of the present study demonstrate that the selective procedures used for isolation of L. monocytogenes may not allow a true representation of the types present in foods. Our results could have a significant impact on epidemiological studies, as lineage 1 strains, which are often isolated from clinical cases of listeriosis, may be suppressed during enrichment by other L. monocytogenes lineages present in a food sample.
Applied and Environmental Microbiology | 2006
Jesper Bartholin Bruhn; Janus A. J. Haagensen; Dorthe Bagge-Ravn; Lone Gram
ABSTRACT The fish probiotic bacterium Roseobacter strain 27-4 grows only as rosettes and produces its antibacterial compound under static growth conditions. It forms three-dimensional biofilms when precultured under static conditions. We quantified attachment of Roseobacter strain 27-4 using a direct real-time PCR method and demonstrated that the bacteria attached more efficiently to surfaces during static growth than under aerated conditions.
Diseases of Aquatic Organisms | 2007
Maria Rasch; Vicky Gaedt Kastbjerg; Jesper Bartholin Bruhn; Inger Dalsgaard; Michael Givskov; Lone Gram
Many pathogens control production of virulence factors by self-produced signals in a process called quorum sensing (QS). We demonstrate that acyl homoserine lactone (AHL) signals, which enable bacteria to express certain phenotypes in relation to cell density, are produced by a wide spectrum of Aeromonas salmonicida strains. All 31 typical strains were AHL producers as were 21 of 26 atypical strains, but on a strain population basis, production of virulence factors such as protease, lipase, A-layer or pigment did not correlate with the production and accumulation of AHLs in the growth medium. Pigment production was only observed in broth under highly aerated conditions. Quorum sensing inhibitors (QSIs) are compounds that specifically block QS systems without affecting bacterial growth and 2 such compounds, sulphur-containing AHL-analogues, reduced production of protease in a typical strain of Aeromonas salmonicida. The most efficient compound N-(heptylsulfanylacetyl)-L-homoserine lactone (HepS-AHL), reduced protease production by a factor of 10. Five extracellular proteases were detected on gelatin-containing sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) gels and 3 of these were completely down regulated by HepS-AHL. Hence, QSIs can curb virulence in some strains and could potentially be pursued as bacterial disease control measures in aquaculture.
Journal of Applied Microbiology | 2009
M.J. Prol; Jesper Bartholin Bruhn; José Pintado; Lone Gram
Aims: To develop a SYBR Green quantitative real‐time PCR protocol enabling detection and quantification of a fish probiotic and two turbot pathogenic Vibrio spp. in microcosms.
FEMS Microbiology Ecology | 2009
Esmeralda Valiente; Jesper Bartholin Bruhn; Kristian Fog Nielsen; Jens Laurits Larsen; Francisco J. Roig; Lone Gram; Carmen Amaro
Vibrio vulnificus is an aquatic pathogenic bacterium that can cause vibriosis in humans and fish. The species is subdivided into three biotypes with the fish-virulent strains belonging to biotype 2. The quorum sensing (QS) phenomenon mediated by furanosyl borate diester or autoinducer 2 (AI-2) has been described in human strains of biotype 1, and here we show that the luxS gene which encodes AI-2 is present in all strains of V. vulnificus regardless of origin, biotype or serovar. In this study, we also demonstrate that V. vulnificus produces QS signals of the acylated homoserine lactone (AHL) class (AI-1). AHLs were detected in strains of biotype 1 and 2 from water, fish and human wound infections but not in strains isolated from human septicaemic cases. The AHL compound was identified as N-butanoyl-homoserine-lactone (C(4)-HL) by both reporter strains and by HPLC-high-resolution MS. C(4)-HL was detected when AHL-positive strains were grown in low-nutrient medium [modified sea water yeast extract (MSWYE)] but not in rich media (tryptic soy broth or brain-heart infusion) and its production was enhanced when blood factors were added to MSWYE. C(4)-HL was detected in vivo, in eels infected with AHL-positive biotype 2 strains. No known AHL-related gene was detected by PCR or Southern blot suggesting that AHL-related genes in V. vulnificus are different from those found in other Gram-negative bacteria.