Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jesper Bendix is active.

Publication


Featured researches published by Jesper Bendix.


Angewandte Chemie | 2001

High-Valent Manganese Corroles and the First Perhalogenated Metallocorrole Catalyst

Galina Golubkov; Jesper Bendix; Harry B. Gray; Atif Mahammed; Israel Goldberg; Angel J. DiBilio; Zeev Gross

On pyrrole! The pyrrole-based corrole ligands can offer an alternative to porphyrin systems. The manganese corroles 1-4 are readily synthesized, undergo metal- not ligand-based redox chemistry, and 4 in particular shows impressive catalytic activity in the oxygenation of styrene with iodosylbenzene.


Angewandte Chemie | 2000

Structural, Electrochemical, and Photophysical Properties of Gallium(III) 5,10,15-Tris(pentafluorophenyl)corrole

Jesper Bendix; Ivan J. Dmochowski; Harry B. Gray; Atif Mahammed; Liliya Simkhovich; Zeev Gross

High quantum yields are found for the prototype metallocorrole 1, which is readily prepared from GaCl_3 and tris(pentafluorophenyl)corrole. The crystallographic and electronic structures of 1 are reported as well as the simple generation of its π-cation radical complex by chemical oxidation and the characteristic spectroscopic features of this ion.


Chemical Science | 2014

Modifying the properties of 4f single-ion magnets by peripheral ligand functionalisation

Kasper S. Pedersen; Liviu Ungur; Marc Sigrist; Alexander Sundt; Magnus Schau-Magnussen; Veacheslav Vieru; Hannu Mutka; Stéphane Rols; Høgni Weihe; Oliver Waldmann; Liviu F. Chibotaru; Jesper Bendix; Jan Dreiser

We study the ligand-field splittings and magnetic properties of three ErIII single-ion magnets which differ in the peripheral ligand sphere but exhibit similar first coordination spheres by inelastic neutron scattering (INS) and SQUID magnetometry. The INS spectra of the three compounds are profoundly different pointing at a strong response of the magnetic behavior to minor structural changes, as they are e.g. encountered when depositing molecules on surfaces. The observation of several magnetic excitations within the J = 15/2 ground multiplet together with single-crystal magnetic measurements allows for the extraction of the sign and magnitude of all symmetry-allowed Stevens parameters. The parameter values and the energy spectrum derived from INS are compared to the results of state-of-the-art ab initio CASSCF calculations. Temperature-dependent alternating current (ac) susceptibility measurements suggest that the magnetisation relaxation in the investigated temperature range of 1.9 K < T < 5 K is dominated by quantum tunnelling of magnetisation and two-phonon Raman processes. The possibility of observing electron paramagnetic resonance transitions between the ground-state doublet states, which can be suppressed in perfectly axial single-ion magnets, renders the studied systems interesting as representations of quantum bits.


Nano Letters | 2010

Electrical manipulation of spin states in a single electrostatically gated transition-metal complex.

Edgar A. Osorio; Kasper Moth-Poulsen; Herre S. J. van der Zant; Jens Paaske; Per Hedegård; Karsten Flensberg; Jesper Bendix; Thomas Bjørnholm

We demonstrate an electrically controlled high-spin (S = 5/2) to low-spin (S = 1/2) transition in a three-terminal device incorporating a single Mn(2+) ion coordinated by two terpyridine ligands. By adjusting the gate-voltage we reduce the terpyridine moiety and thereby strengthen the ligand-field on the Mn-atom. Adding a single electron thus stabilizes the low-spin configuration and the corresponding sequential tunnelling current is suppressed by spin-blockade. From low-temperature inelastic cotunneling spectroscopy, we infer the magnetic excitation spectrum of the molecule and uncover also a strongly gate-dependent singlet-triplet splitting on the low-spin side. The measured bias-spectroscopy is shown to be consistent with an exact diagonalization of the Mn-complex, and an interpretation of the data is given in terms of a simplified effective model.


Inorganic Chemistry | 2015

Design of Single-Molecule Magnets: Insufficiency of the Anisotropy Barrier as the Sole Criterion

Kasper S. Pedersen; Jan Dreiser; Høgni Weihe; Romain Sibille; Heini V. Johannesen; Mikkel Sørensen; Bjarne E. Nielsen; Marc Sigrist; Hannu Mutka; Stéphane Rols; Jesper Bendix; Stergios Piligkos

Determination of the electronic energy spectrum of a trigonal-symmetry mononuclear Yb(3+) single-molecule magnet (SMM) by high-resolution absorption and luminescence spectroscopies reveals that the first excited electronic doublet is placed nearly 500 cm(-1) above the ground one. Fitting of the paramagnetic relaxation times of this SMM to a thermally activated (Orbach) model {τ = τ0 × exp[ΔOrbach/(kBT)]} affords an activation barrier, ΔOrbach, of only 38 cm(-1). This result is incompatible with the spectroscopic observations. Thus, we unambiguously demonstrate, solely on the basis of experimental data, that Orbach relaxation cannot a priori be considered as the main mechanism determining the spin dynamics of SMMs. This study highlights the fact that the general synthetic approach of optimizing SMM behavior by maximization of the anisotropy barrier, intimately linked to the ligand field, as the sole parameter to be tuned, is insufficient because of the complete neglect of the interaction of the magnetic moment of the molecule with its environment. The Orbach mechanism is expected dominant only in the cases in which the energy of the excited ligand field state is below the Debye temperature, which is typically low for molecular crystals and, thus, prevents the use of the anisotropy barrier as a design criterion for the realization of high-temperature SMMs. Therefore, consideration of additional design criteria that address the presence of alternative relaxation processes beyond the traditional double-well picture is required.


Angewandte Chemie | 2014

[ReF6]2−: A Robust Module for the Design of Molecule‐Based Magnetic Materials

Kasper S. Pedersen; Marc Sigrist; Mikkel Sørensen; Anne-Laure Barra; Thomas Weyhermüller; Stergios Piligkos; Christian Aa. Thuesen; Morten G. Vinum; Hannu Mutka; Høgni Weihe; Rodolphe Clérac; Jesper Bendix

A facile synthesis of the [ReF6 ](2-) ion and its use as a building block to synthesize magnetic systems are reported. Using dc and ac magnetic susceptibility measurements, INS and EPR spectroscopies, the magnetic properties of the isolated [ReF6 ](2-) unit in (PPh4 )2 [ReF6 ]⋅2 H2 O (1) have been fully studied including the slow relaxation of the magnetization observed below ca. 4 K. This slow dynamic is preserved for the one-dimensional coordination polymer [Zn(viz)4 (ReF6 )]∞ (2, viz=1-vinylimidazole), demonstrating the irrelevance of low symmetry for such magnetization dynamics in systems with easy-plane-type anisotropy. The ability of fluoride to mediate significant exchange interactions is exemplified by the isostructural [Ni(viz)4 (ReF6 )]∞ (3) analogue in which the ferromagnetic Ni(II) -Re(IV) interaction (+10.8 cm(-1) ) dwarfs the coupling present in related cyanide-bridged systems. These results reveal [ReF6 ](2-) to be an unique new module for the design of molecule-based magnetic materials.


Chemical Science | 2012

Direct observation of a ferri-to-ferromagnetic transition in a fluoride-bridged 3d–4f molecular cluster

Jan Dreiser; Kasper S. Pedersen; Cinthia Piamonteze; Stefano Rusponi; Zaher Salman; Md. Ehesan Ali; Magnus Schau-Magnussen; Christian Aa. Thuesen; Stergios Piligkos; Høgni Weihe; Hannu Mutka; Oliver Waldmann; Peter M. Oppeneer; Jesper Bendix; F. Nolting; Harald Brune

We report on the synthesis, crystal structure and magnetic characterisation of the trinuclear, fluoride-bridged, molecular nanomagnet [Dy(hfac)3(H2O)–CrF2(py)4–Dy(hfac)3(NO3)] (1) (hfacH = 1,1,1,5,5,5-hexafluoroacetylacetone, py = pyridine) and a closely related dinuclear species [Dy(hfac)4–CrF2(py)4]·½CHCl3 (2). Element-specific magnetisation curves obtained on 1 by X-ray magnetic circular dichroism (XMCD) allow us to directly observe the field-induced transition from a ferrimagnetic to a ferromagnetic arrangement of the Dy and Cr magnetic moments. By fitting a spin-Hamiltonian model to the XMCD data we extract a weak antiferromagnetic exchange coupling of j = −0.18 cm−1 between the DyIII and CrIII ions. The value found from XMCD is consistent with SQUID magnetometry and inelastic neutron scattering measurements. Furthermore, alternating current susceptibility and muon-spin relaxation measurements reveal that 1 shows thermally activated relaxation of magnetisation with a small effective barrier for magnetisation reversal of Δeff = 3 cm−1. Density-functional theory calculations show that the Dy–Cr couplings originate from superexchange via the fluoride bridges.


Journal of the American Chemical Society | 2016

Toward Molecular 4f Single-Ion Magnet Qubits

Kasper S. Pedersen; Ana-Maria Ariciu; Simon G. McAdams; Høgni Weihe; Jesper Bendix; Floriana Tuna; Stergios Piligkos

Quantum coherence is detected in the 4f single-ion magnet (SIM) Yb(trensal), by isotope selective pulsed EPR spectroscopy on an oriented single crystal. At X-band, the spin-lattice relaxation (T1) and phase memory (Tm) times are found to be independent of the nuclei bearing, or not, a nuclear spin. The observation of Rabi oscillations of the spin echo demonstrates the possibility to coherently manipulate the system for more than 70 rotations. This renders Yb(trensal), a sublimable and chemically modifiable SIM, an excellent candidate for quantum information processing.


Angewandte Chemie | 2014

Fluoride-Bridged {GdIII3MIII2} (M=Cr, Fe, Ga) Molecular Magnetic Refrigerants†

Kasper S. Pedersen; Giulia Lorusso; Juan José Morales; Thomas Weyhermüller; Stergios Piligkos; Saurabh Kumar Singh; Dennis Larsen; Magnus Schau-Magnussen; Gopalan Rajaraman; Marco Evangelisti; Jesper Bendix

The reaction of fac-[M(III)F3(Me3tacn)]⋅x H2O with Gd(NO3)3⋅5H2O affords a series of fluoride-bridged, trigonal bipyramidal {Gd(III)3M(III)2} (M = Cr (1), Fe (2), Ga (3)) complexes without signs of concomitant GdF3 formation, thereby demonstrating the applicability even of labile fluoride-complexes as precursors for 3d-4f systems. Molecular geometry enforces weak exchange interactions, which is rationalized computationally. This, in conjunction with a lightweight ligand sphere, gives rise to large magnetic entropy changes of 38.3 J kg(-1)  K(-1) (1) and 33.1 J kg(-1)  K(-1) (2) for the field change 7 T→0 T. Interestingly, the entropy change, and the magnetocaloric effect, are smaller in 2 than in 1 despite the larger spin ground state of the former secured by intramolecular Fe-Gd ferromagnetic interactions. This observation underlines the necessity of controlling not only the ground state but also close-lying excited states for successful design of molecular refrigerants.


Inorganic Chemistry | 2009

Single-Ion Anisotropy and Exchange Interactions in the Cyano-Bridged Trimers MnIII2MIII(CN)6 (MIII = Co, Cr, Fe) Species Incorporating [Mn(5-Brsalen)]+ Units: An Inelastic Neutron Scattering and Magnetic Susceptibility Study

Philip L. W. Tregenna-Piggott; D. Sheptyakov; Lukas Keller; Sophia I. Klokishner; Sergei M. Ostrovsky; Andrei V. Palii; Oleg S. Reu; Jesper Bendix; Theis Brock-Nannestad; Kasper S. Pedersen; Høgni Weihe; Hannu Mutka

The electronic structures of the compounds K[(5-Brsalen)(2)(H(2)O)(2)-Mn(2)M(III)(CN)(6)].2H(2)O (M(III) = Co(III), Cr(III), Fe(III)) have been determined by inelastic neutron scattering (INS) and magnetic susceptibility studies, revealing the manganese(III) single-ion anisotropy and exchange interactions that define the low-lying states of the Mn-M(III)-Mn trimeric units. Despite the presence of an antiferromagnetic intertrimer interaction, the experimental evidence supports the classification of both the Cr(III) and Fe(III) compounds as single-molecule magnets. The value of 17(2) cm(-1) established from AC susceptibility measurements for a spin-reversal barrier of K[(5-Brsalen)(2)(H(2)O)(2)-Mn(2)Cr(CN)(6)].2H(2)O may be readily rationalized in terms of the energy level diagram determined directly by INS. AC susceptibility measurements on samples of K[(5-Brsalen)(2)(H(2)O)(2)-Mn(2)Fe(CN)(6)].2H(2)O are contrary to those previously reported, exhibiting but the onset of peaks below temperatures of 1.8 K at oscillating frequencies in the range of 100-800 Hz. INS measurements reveal an anisotropic ferromagnetic manganese(III)-iron(III) exchange interaction, in accordance with theoretical expectations based on the unquenched orbital angular momentum of the [Fe(CN)(6)](3-) anion, giving rise to an M(s) approximately +/-9/2 ground state, isolated by approximately 11.5 cm(-1) from the higher-lying levels. The reported INS and magnetic data should now serve as a benchmark against which theoretical models that aim to inter-relate the electronic and molecular structure of molecular magnets should be tested.

Collaboration


Dive into the Jesper Bendix's collaboration.

Top Co-Authors

Avatar

Kasper S. Pedersen

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Høgni Weihe

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hannu Mutka

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Torben Birk

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Jan Dreiser

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge