Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jesper F. Bastlund is active.

Publication


Featured researches published by Jesper F. Bastlund.


Journal of Medicinal Chemistry | 2010

Structure-activity relationship study of first selective inhibitor of excitatory amino acid transporter subtype 1: 2-Amino-4-(4-methoxyphenyl)-7-(naphthalen-1-yl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (UCPH-101).

Mette N. Erichsen; Tri H. V. Huynh; Bjarke Abrahamsen; Jesper F. Bastlund; Christoffer Bundgaard; Olja Monrad; Anders Bekker-Jensen; Christina W. Nielsen; Karla Frydenvang; Anders A. Jensen; Lennart Bunch

The excitatory amino acid transporters (EAATs) are expressed throughout the central nervous system, where they are responsible for the reuptake of the excitatory neurotransmitter (S)-glutamate (Glu). (1) Recently, we have reported the discovery of the first subtype selective EAAT1 inhibitor 2-amino-4-(4-methoxyphenyl)-7-(naphthalen-1-yl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (UCPH-101) (1b) and presented an introductory structure-activity relationship (SAR) study. (2) Here, we present a detailed SAR by the design, synthesis, and pharmacological evaluation of analogues 1g-1t. By comparison of potencies of 1b, 1h, and 1i versus 1j, it is evident that potency is largely influenced by the chemical nature of the R(1) substituent. The study also demonstrates that any chemical change of the functional groups or a change to the parental scaffold results in the complete loss of inhibitory activity of the compounds at EAAT1. Finally, a bioavailability study of UCPH-101 determined the half-life to be 30 min in serum (rats) but also that it was not able to penetrate the blood-brain barrier to any significant degree.


Biological Psychiatry | 2014

A Mouse Model that Recapitulates Cardinal Features of the 15q13.3 Microdeletion Syndrome Including Schizophrenia- and Epilepsy-Related Alterations

Kim Fejgin; Jacob Nielsen; Michelle Rosgaard Birknow; Jesper F. Bastlund; Vibeke Nielsen; Jes B. Lauridsen; Hreinn Stefansson; Stacy Steinberg; Helge Bjarup Dissing Sørensen; Troels E. Mortensen; Peter H. Larsen; Ib Vestergaard Klewe; Søren V. Rasmussen; Kari Stefansson; Thomas Werge; Pekka Kallunki; Kenneth Vielsted Christensen; Michael Didriksen

BACKGROUND Genome-wide scans have uncovered rare copy number variants conferring high risk of psychiatric disorders. The 15q13.3 microdeletion is associated with a considerably increased risk of idiopathic generalized epilepsy, intellectual disability, and schizophrenia. METHODS A 15q13.3 microdeletion mouse model (Df[h15q13]/+) was generated by hemizygous deletion of the orthologous region and characterized with focus on schizophrenia- and epilepsy-relevant parameters. RESULTS Df(h15q13)/+ mice showed marked changes in neuronal excitability in acute seizure assays, with increased propensity to develop myoclonic and absence-like seizures but decreased propensity for clonic and tonic seizures. Furthermore, they had impaired long-term spatial reference memory and a decreased theta frequency in hippocampus and prefrontal cortex. Electroencephalogram characterization revealed auditory processing deficits similar to those observed in schizophrenia. Gamma band power was increased during active state, but evoked gamma power following auditory stimulus (40 Hz) was dramatically reduced, mirroring observations in patients with schizophrenia. In addition, Df(h15q13)/+ mice showed schizophrenia-like decreases in amplitudes of auditory evoked potentials. Although displaying a grossly normal behavior, Df(h15q13)/+ mice are more aggressive following exposure to mild stressors, similar to what is described in human deletion carriers. Furthermore, Df(h15q13)/+ mice have increased body weight, and a similar increase in body weight was subsequently found in a sample of human subjects with 15q13.3 deletion. CONCLUSIONS The Df(h15q13)/+ mouse shows similarities to several alterations related to the 15q13.3 microdeletion syndrome, epilepsy, and schizophrenia, offering a novel tool for addressing the underlying biology of these diseases.


Journal of Neuroscience Methods | 2004

Measurement of cortical and hippocampal epileptiform activity in freely moving rats by means of implantable radiotelemetry

Jesper F. Bastlund; Poul Jennum; Paul Mohapel; Vanessa Vogel; William Patrick Watson

Implanted radiotelemetry has been used for the measurement of cortical electroencephalogram (EEG), locomotor activity, body temperature and cardiovascular parameters. This technique allows high quality data acquisition from freely moving animals with no complications of externalised apparatus. This paper focuses on the methodology for short and long-term monitoring of epileptiform activity by simultaneous cortical EEG, hippocampal (HC) EEG and electromyogram (EMG) in rats. The circadian rhythm of temperature (CRT) was monitored after surgery to estimate the need for post surgical recovery of animals. Different placements of EMG electrodes were assessed in order to minimise artefacts and increase sensitivity. The occurrence of epileptiform ictal and interictal activity following an acute injection of either 40 mg/kg pentylenetetrazole (PTZ) or 13.8 mg/kg kainic acid (KA) was investigated. The occurrence of spontaneous seizures was also monitored 5-8 weeks after administration of KA. The present study demonstrated a sensitive method for monitoring cortical EEG, hippocampal EEG and EMG short and long-term by implantable radiotelemetry in freely moving rats.


Behavioural Brain Research | 2013

Cholinergic degeneration is associated with increased plaque deposition and cognitive impairment in APPswe/PS1dE9 mice.

Bettina Laursen; Arne Mørk; Niels Plath; Uffe Kristiansen; Jesper F. Bastlund

Cholinergic dysfunction and deposition of plaques containing amyloid β-peptides (Aβ) are two of the characteristics of Alzheimers disease. Here, we combine APPswe/PS1dE9 (APP/PS1) mice with the cholinergic immunotoxin mu p75-saporin (SAP) to integrate partial basal forebrain cholinergic degeneration and the neuropathology of APP/PS1 mice. By 6 months of age, APP/PS1 mice and wild type littermates (Wt) received intracerebroventricular injection of 0.6 μg SAP (lesion) or PBS (sham). Two months following surgery, APP/PS1 mice treated with SAP were significantly impaired compared to sham treated APP/PS1 mice in a behavioural paradigm addressing working memory. Conversely, the performance of Wt mice was unaffected by SAP treatment. Choline acetyltransferase activity was reduced in the hippocampus and frontal cortex following SAP treatment. The selective effect of a mild SAP lesion in APP/PS1 mice was not due to a more extensive cholinergic degeneration since the reduction in choline acetyltransferase activity was similar following SAP treatment in APP/PS1 mice and Wt. Interestingly, plaque load was significantly increased in SAP treated APP/PS1 mice relative to sham lesioned APP/PS1 mice. Additionally, APP/PS1 mice treated with SAP showed a tendency towards an increased level of soluble and insoluble Aβ1-40 and Aβ1-42 measured in brain tissue homogenate. Our results suggest that the combination of cholinergic degeneration and Aβ overexpression in the APP/PS1 mouse model results in cognitive decline and accelerated plaque burden. SAP treated APP/PS1 mice might thus constitute an improved model of Alzheimers disease-like neuropathology and cognitive deficits compared to the conventional APP/PS1 model without selective removal of basal forebrain cholinergic neurons.


Epilepsia | 2005

Spontaneous epileptic rats show changes in sleep architecture and hypothalamic pathology

Jesper F. Bastlund; Poul Jennum; Paul Mohapel; Silke Penschuck; William Patrick Watson

Summary:  Purpose: The goal of the present study was to investigate the relationship between sleep, hypothalamic pathology, and seizures in spontaneous epileptic rats.


Behavioural Brain Research | 2010

Assessment of auditory sensory processing in a neurodevelopmental animal model of schizophrenia—Gating of auditory-evoked potentials and prepulse inhibition

Brian V. Broberg; Bob Oranje; Birte Glenthøj; Kim Fejgin; Niels Plath; Jesper F. Bastlund

The use of translational approaches to validate animal models is needed for the development of treatments that can effectively alleviate cognitive impairments associated with schizophrenia, which are unsuccessfully treated by the current available therapies. Deficits in pre-attentive stages of sensory information processing seen in schizophrenia patients, can be assessed by highly homologues methods in both humans and rodents, evident by the prepulse inhibition (PPI) of the auditory startle response and the P50 (termed P1 here) suppression paradigms. Treatment with the NMDA receptor antagonist PCP on postnatal days 7, 9, and 11 reliably induce cognitive impairments resembling those presented by schizophrenia patients. Here we evaluate the potential of early postnatal PCP (20mg/kg) treatment in Lister Hooded rats to induce post-pubertal deficits in PPI and changes, such as reduced gating, in the P1 suppression paradigm in the EEG. The results indicate that early postnatal PCP treatment to rats leads to a reduction in PPI of the acoustic startle response. Furthermore, treated animals were assessed in the P1 suppression paradigm and produced significant changes in auditory-evoked potentials (AEP), specifically by an increased P1 amplitude and reduced P2 (P200 in humans) gating. However, the treatment neither disrupted normal P1 gating nor reduced N1 (N100 in humans) amplitude, representing two phenomena that are usually found to be disturbed in schizophrenia. In conclusion, the current findings confirm measures of early information processing to show high resemblance between rodents and humans, and indicate that early postnatal PCP-treated rats show deficits in pre-attentional processing, which are distinct from those observed in schizophrenia patients.


Behavioural Brain Research | 2014

Auditory sensory processing deficits in sensory gating and mismatch negativity-like responses in the social isolation rat model of schizophrenia.

Louise Witten; Bob Oranje; Arne Mørk; Björn Steiniger-Brach; Birte Glenthøj; Jesper F. Bastlund

Patients with schizophrenia exhibit disturbances in information processing. These disturbances can be investigated with different paradigms of auditory event related potentials (ERP), such as sensory gating in a double click paradigm (P50 suppression) and the mismatch negativity (MMN) component in an auditory oddball paradigm. The aim of the current study was to test if rats subjected to social isolation, which is believed to induce some changes that mimic features of schizophrenia, displays alterations in sensory gating and MMN-like response. Male Lister-Hooded rats were separated into two groups; one group socially isolated (SI) for 8 weeks and one group housed (GH). Both groups were then tested in a double click sensory gating paradigm and an auditory oddball paradigm (MMN-like) paradigm. It was observed that the SI animals showed reduced sensory gating of the cortical N1 amplitude. Furthermore, the SI animals showed significant reduction in cortical MMN-like response compared with the GH animals. No deficits in sensory gating or MMN-like response were observed in the hippocampus (CA3) of the SI animals compared with GH animals. In conclusion, the change in sensory gating of the N1 amplitude supports previous findings in SI rats and the reduced MMN-like response is similar to the deficits of MMN seen in patients with schizophrenia. Since reduced auditory MMN amplitude is believed to be more selectively associated with schizophrenia than other measures of sensory gating deficits, the current study supports the face validity of the SI reared rat model for schizophrenia.


Neuropharmacology | 2005

Pharmacological and histological characterisation of nicotine-kindled seizures in mice

Jesper F. Bastlund; David J. Berry; William Patrick Watson

The present study reports that it is possible to induce kindling by repeated injections of nicotine. The newly characterised nicotine-kindling model was compared with that of pentylenetetrazole (PTZ) kindling. Mice were kindled by repeated injection of PTZ (37 mg/kg), or nicotine (2.3 mg/kg), and the effect of the anti-epileptic drugs (AED) levetiracetam (LEV), tiagabine (TGB) and phenytoin (PHT) on seizures in kindled and naive mice were investigated. C-Fos immunoreactivity (Fos IR) was used to investigate differences in neuronal activity pattern between PTZ-, nicotine kindled and naive animals. PTZ kindled animals mainly showed increased Fos IR in limbic regions, whereas Fos IR in nicotine kindled animals was increased in the entorhinal cortex, medial habenula and the compact part of substantia nigra. Fully kindled PTZ-induced seizures were inhibited by LEV (ED50=13.6+/-7.8 mg/kg), TGB (ED50=0.3+/-0.04 mg/kg) but not PHT (ED50>40 mg/kg) whereas fully kindled nicotine-induced seizures were inhibited by LEV (ED50=1.4+/-0.4 mg/kg), TGB (ED50=0.3+/-0.06 mg/kg) and PHT (ED50=9.2+/-2.4 mg/kg). These differences in efficacy of AEDs were not due to changes in plasma levels in the various models. In conclusion, repeated administration of nicotine can induce a kindling-like phenomenon and the model showed significantly different Fos IR pattern and pharmacology to that of PTZ kindling.


Trends in Pharmacological Sciences | 2014

Therapeutic potential of NaV1.1 activators

Henrik Sindal Jensen; Morten Grunnet; Jesper F. Bastlund

Sodium channel inhibitors have been developed and approved as drugs to treat a variety of indications. By contrast, sodium channel activators have not previously been considered relevant in a therapeutic setting owing to their high risk of toxicity and side effects. Here we present an opinion that selective activators of the Na(V)1.1 sodium channel may hold therapeutic potential for diseases such as epilepsy, schizophrenia, and Alzheimers disease. Central to this novel avenue of sodium channel drug discovery is that fact that Na(V)1.1 comprises the majority of the sodium current in specific inhibitory interneurons. Conversely, it plays only a modest role in excitatory neurons owing to the high redundancy of other types of sodium channels in these cells. We discuss the biological background and rationale and present reflections on how to identify activators of Na(V)1.1.


Brain Research | 2014

Impaired hippocampal acetylcholine release parallels spatial memory deficits in Tg2576 mice subjected to basal forebrain cholinergic degeneration.

Bettina Laursen; Arne Mørk; Niels Plath; Uffe Kristiansen; Jesper F. Bastlund

The Alzheimers disease (AD) mouse model Tg2576 overexpresses an AD associated mutant variant of human APP and accumulates amyloid beta (Aβ) in an age-dependent manner. Using the selective cholinergic immunotoxin mu p75-saporin (SAP), we induced a partial basal forebrain cholinergic degeneration (BFCD) in 3 months old male Tg2576 mice to co-express cholinergic degeneration with Aβ overexpression as these characteristics constitutes key hallmarks of AD. At 9 months, SAP lesioned Tg2576 mice were cognitively impaired in two spatial paradigms addressing working memory and mid to long-term memory. Conversely, there was no deterioration of cognitive functioning in sham lesioned Tg2576 mice or wild type littermates (wt) receiving the immunotoxin. At 10 months of age, release of acetylcholine (ACh) was addressed by microdialysis in conscious mice. Scopolamine-induced increases in hippocampal ACh efflux was significantly reduced in SAP lesioned Tg2576 mice compared to sham lesioned Tg2576 mice. Intriguingly, there was no significant difference in ACh efflux between wt treatment groups. Following SAP treatment, choline acetyltransferase activity was reduced in the hippocampus and frontal cortex and the reduction was comparable between groups. Our results suggest that partial BFCD acts collectively with increased levels of Aβ to induce cognitive decline and to compromise cholinergic release. Tg2576 mice with BFCD may constitute a new and suitable AD mouse model to study the interrelations between cholinergic deficits and amsyloid deposition.

Collaboration


Dive into the Jesper F. Bastlund's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudio Babiloni

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Gianluigi Forloni

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudio Del Percio

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge