Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jesper Nygård is active.

Publication


Featured researches published by Jesper Nygård.


Nature Photonics | 2013

Single-nanowire solar cells beyond the Shockley-Queisser limit

Peter Krogstrup; H. I. Jørgensen; Martin Heiss; Olivier Demichel; Jeppe V. Holm; Martin Aagesen; Jesper Nygård; Anna Fontcuberta i Morral

Light management is of great importance in photovoltaic cells, as it determines the fraction of incident light entering the device. An optimal p–n junction combined with optimal light absorption can lead to a solar cell efficiency above the Shockley–Queisser limit. Here, we show how this is possible by studying photocurrent generation for a single core–shell p–i–n junction GaAs nanowire solar cell grown on a silicon substrate. At 1 sun illumination, a short-circuit current of 180 mA cm –2 is obtained, which is more than one order of magnitude higher than that predicted from the Lambert–Beer law. The enhanced light absorption is shown to be due to a light-concentrating property of the standing nanowire, as shown by photocurrent maps of the device. The results imply new limits for the maximum efficiency obtainable with III–V based nanowire solar cells under 1 sun illumination.


Nature | 2000

Kondo physics in carbon nanotubes

Jesper Nygård; David Cobden; P. E. Lindelof

The connection of electrical leads to wire-like molecules is a logical step in the development of molecular electronics, but also allows studies of fundamental physics. For example, metallic carbon nanotubes are quantum wires that have been found to act as one-dimensional quantum dots, Luttinger liquids, proximity-induced superconductors and ballistic and diffusive one-dimensional metals. Here we report that electrically contacted single-walled carbon nanotubes can serve as powerful probes of Kondo physics, demonstrating the universality of the Kondo effect. Arising in the prototypical case from the interaction between a localized impurity magnetic moment and delocalized electrons in a metallic host, the Kondo effect has been used to explain enhanced low-temperature scattering from magnetic impurities in metals, and also occurs in transport through semiconductor quantum dots. The far greater tunability of dots (in our case, nanotubes) compared with atomic impurities renders new classes of Kondo-like effects accessible. Our nanotube devices differ from previous systems in which Kondo effects have been observed, in that they are one-dimensional quantum dots with three-dimensional metal (gold) reservoirs. This allows us to observe Kondo resonances for very large electron numbers (N) in the dot, and approaching the unitary limit (where the transmission reaches its maximum possible value). Moreover, we detect a previously unobserved Kondo effect, occurring for even values of N in a magnetic field.


Nature | 2016

Exponential protection of zero modes in Majorana islands

S. M. Albrecht; A. P. Higginbotham; Morten Madsen; Ferdinand Kuemmeth; T. S. Jespersen; Jesper Nygård; Peter Krogstrup; C. M. Marcus

Majorana zero modes are quasiparticle excitations in condensed matter systems that have been proposed as building blocks of fault-tolerant quantum computers. They are expected to exhibit non-Abelian particle statistics, in contrast to the usual statistics of fermions and bosons, enabling quantum operations to be performed by braiding isolated modes around one another. Quantum braiding operations are topologically protected insofar as these modes are pinned near zero energy, with the departure from zero expected to be exponentially small as the modes become spatially separated. Following theoretical proposals, several experiments have identified signatures of Majorana modes in nanowires with proximity-induced superconductivity and atomic chains, with small amounts of mode splitting potentially explained by hybridization of Majorana modes. Here, we use Coulomb-blockade spectroscopy in an InAs nanowire segment with epitaxial aluminium, which forms a proximity-induced superconducting Coulomb island (a ‘Majorana island’) that is isolated from normal-metal leads by tunnel barriers, to measure the splitting of near-zero-energy Majorana modes. We observe exponential suppression of energy splitting with increasing wire length. For short devices of a few hundred nanometres, sub-gap state energies oscillate as the magnetic field is varied, as is expected for hybridized Majorana modes. Splitting decreases by a factor of about ten for each half a micrometre of increased wire length. For devices longer than about one micrometre, transport in strong magnetic fields occurs through a zero-energy state that is energetically isolated from a continuum, yielding uniformly spaced Coulomb-blockade conductance peaks, consistent with teleportation via Majorana modes. Our results help to explain the trivial-to-topological transition in finite systems and to quantify the scaling of topological protection with end-mode separation.


Nano Letters | 2010

Structural Phase Control in Self-Catalyzed Growth of GaAs Nanowires on Silicon (111)

Peter Krogstrup; Ronit Popovitz-Biro; E. Johnson; Morten Madsen; Jesper Nygård; Hadas Shtrikman

Au free GaAs nanowires with zinc blende structure, free of twin planes and with remarkable aspect ratios, have been grown on (111) Si substrates by molecular beam epitaxy. Nanowires with diameters down to 20 nm are obtained using a thin native oxide layer on the Si substrates. We discuss how the structural phase distribution along the wire length is controlled by the effective V/III ratio and temperature at the growth interface and explain how to obtain a pure twin plane free zinc blende structure.


Nature Communications | 2013

A high-mobility two-dimensional electron gas at the spinel/perovskite interface of γ-Al2O3/SrTiO3.

Yunzhong Chen; N. Bovet; Felix Trier; Dennis Valbjørn Christensen; F.M. Qu; Niels Hessel Andersen; Takeshi Kasama; Wei Zhang; R. Giraud; J. Dufouleur; T. S. Jespersen; J. R. Sun; Anders Smith; Jesper Nygård; L. Lu; Bernd Büchner; B. G. Shen; Søren Linderoth; Nini Pryds

The discovery of two-dimensional electron gases at the heterointerface between two insulating perovskite-type oxides, such as LaAlO(3) and SrTiO(3), provides opportunities for a new generation of all-oxide electronic devices. Key challenges remain for achieving interfacial electron mobilities much beyond the current value of approximately 1,000 cm(2) V(-1) s(-1) (at low temperatures). Here we create a new type of two-dimensional electron gas at the heterointerface between SrTiO(3) and a spinel γ-Al(2)O(3) epitaxial film with compatible oxygen ions sublattices. Electron mobilities more than one order of magnitude higher than those of hitherto-investigated perovskite-type interfaces are obtained. The spinel/perovskite two-dimensional electron gas, where the two-dimensional conduction character is revealed by quantum magnetoresistance oscillations, is found to result from interface-stabilized oxygen vacancies confined within a layer of 0.9 nm in proximity to the interface. Our findings pave the way for studies of mesoscopic physics with complex oxides and design of high-mobility all-oxide electronic devices.


Nature | 2009

Cooper pair splitter realized in a two-quantum-dot Y-junction

L. Hofstetter; Szabolcs Csonka; Jesper Nygård; Christian Schönenberger

Non-locality is a fundamental property of quantum mechanics that manifests itself as correlations between spatially separated parts of a quantum system. A fundamental route for the exploration of such phenomena is the generation of Einstein–Podolsky–Rosen (EPR) pairs of quantum-entangled objects for the test of so-called Bell inequalities. Whereas such experimental tests of non-locality have been successfully conducted with pairwise entangled photons, it has not yet been possible to realize an electronic analogue of it in the solid state, where spin-1/2 mobile electrons are the natural quantum objects. The difficulty stems from the fact that electrons are immersed in a macroscopic ground state—the Fermi sea—which prevents the straightforward generation and splitting of entangled pairs of electrons on demand. A superconductor, however, could act as a source of EPR pairs of electrons, because its ground-state is composed of Cooper pairs in a spin-singlet state. These Cooper pairs can be extracted from a superconductor by tunnelling, but, to obtain an efficient EPR source of entangled electrons, the splitting of the Cooper pairs into separate electrons has to be enforced. This can be achieved by having the electrons ‘repel’ each other by Coulomb interaction. Controlled Cooper pair splitting can thereby be realized by coupling of the superconductor to two normal metal drain contacts by means of individually tunable quantum dots. Here we demonstrate the first experimental realization of such a tunable Cooper pair splitter, which shows a surprisingly high efficiency. Our findings open a route towards a first test of the EPR paradox and Bell inequalities in the solid state.


Nature Communications | 2013

Surface-passivated GaAsP single-nanowire solar cells exceeding 10% efficiency grown on silicon

Jeppe V. Holm; H. I. Jørgensen; Peter Krogstrup; Jesper Nygård; Huiyun Liu; Martin Aagesen

Continued development of high-efficiency multi-junction solar cells requires growth of lattice-mismatched materials. Today, the need for lattice matching both restricts the bandgap combinations available for multi-junctions solar cells and prohibits monolithic integration of high-efficiency III-V materials with low-cost silicon solar cells. The use of III-V nanowires is the only known method for circumventing this lattice-matching constraint, and therefore it is necessary to develop growth of nanowires with bandgaps >1.4 eV. Here we present the first gold-free gallium arsenide phosphide nanowires grown on silicon by means of direct epitaxial growth. We demonstrate that their bandgap can be controlled during growth and fabricate core-shell nanowire solar cells. We further demonstrate that surface passivation is of crucial importance to reach high efficiencies, and present a record efficiency of 10.2% for a core-shell single-nanowire solar cell.


Science | 2016

Majorana bound state in a coupled quantum-dot hybrid-nanowire system

Mingtang Deng; S. Vaitiekėnas; Esben Bork Hansen; Jeroen Danon; Martin Leijnse; Karsten Flensberg; Jesper Nygård; Peter Krogstrup; C. M. Marcus

Watching Majorana bound states form Majorana bound states (MBSs) are peculiar quasiparticles that may one day become the cornerstone of topological quantum computing. To engineer these states, physicists have used semiconductor nanowires in contact with a superconductor. Although many of the observed properties align with theoretical predictions, a closer look into the creation of MBSs is desirable. Deng et al. fabricated nanowires with a quantum dot at one end that served as a spectrometer for the states that formed inside the superconducting gap of the nanowire. Using this setup, topologically trivial bound states were seen to coalesce into MBSs as the magnetic field was varied. Science, this issue p. 1557 Tunneling spectroscopy gives insights into the formation of Majorana bound states in a proximitized indium arsenide nanowire. Hybrid nanowires combining semiconductor and superconductor materials appear well suited for the creation, detection, and control of Majorana bound states (MBSs). We demonstrate the emergence of MBSs from coalescing Andreev bound states (ABSs) in a hybrid InAs nanowire with epitaxial Al, using a quantum dot at the end of the nanowire as a spectrometer. Electrostatic gating tuned the nanowire density to a regime of one or a few ABSs. In an applied axial magnetic field, a topological phase emerges in which ABSs move to zero energy and remain there, forming MBSs. We observed hybridization of the MBS with the end-dot bound state, which is in agreement with a numerical model. The ABS/MBS spectra provide parameters that are useful for understanding topological superconductivity in this system.


Physical Review B | 2000

Bias and temperature dependence of the 0.7 conductance anomaly in quantum point contacts

Anders Kristensen; Henrik Bruus; Adam E. Hansen; J. Jensen; P. E. Lindelof; C. J. Marckmann; Jesper Nygård; Claus B. Sørensen; F. Beuscher; A. Forchel; M. Michel

The 0.7 (2e^2/h) conductance anomaly is studied in strongly confined, etched GaAs/GaAlAs quantum point contacts, by measuring the differential conductance as a function of source-drain and gate bias as well as a function of temperature. We investigate in detail how, for a given gate voltage, the differential conductance depends on the finite bias voltage and find a so-called self-gating effect, which we correct for. The 0.7 anomaly at zero bias is found to evolve smoothly into a conductance plateau at 0.85 (2e^2/h) at finite bias. Varying the gate voltage the transition between the 1.0 and the 0.85 (2e^2/h) plateaus occurs for definite bias voltages, which defines a gate voltage dependent energy difference


Nano Letters | 2011

Three-Dimensional Multiple-Order Twinning of Self-Catalyzed GaAs Nanowires on Si Substrates

Emanuele Uccelli; Jordi Arbiol; C. Magen; Peter Krogstrup; Eleonora Russo-Averchi; Martin Heiss; Gabriel Mugny; François Morier-Genoud; Jesper Nygård; Joan Ramon Morante; Anna Fontcuberta i Morral

\Delta

Collaboration


Dive into the Jesper Nygård's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. M. Marcus

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. E. Lindelof

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Aagesen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Morten Madsen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

E. Johnson

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge