Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jesper Pallesen is active.

Publication


Featured researches published by Jesper Pallesen.


Nature | 2016

Pre-fusion structure of a human coronavirus spike protein

Robert N. Kirchdoerfer; Christopher A. Cottrell; Nianshuang Wang; Jesper Pallesen; Hadi M. Yassine; Hannah L. Turner; Kizzmekia S. Corbett; Barney S. Graham; Jason S. McLellan; Andrew B. Ward

HKU1 is a human betacoronavirus that causes mild yet prevalent respiratory disease, and is related to the zoonotic SARS and MERS betacoronaviruses, which have high fatality rates and pandemic potential. Cell tropism and host range is determined in part by the coronavirus spike (S) protein, which binds cellular receptors and mediates membrane fusion. As the largest known class I fusion protein, its size and extensive glycosylation have hindered structural studies of the full ectodomain, thus preventing a molecular understanding of its function and limiting development of effective interventions. Here we present the 4.0 Å resolution structure of the trimeric HKU1 S protein determined using single-particle cryo-electron microscopy. In the pre-fusion conformation, the receptor-binding subunits, S1, rest above the fusion-mediating subunits, S2, preventing their conformational rearrangement. Surprisingly, the S1 C-terminal domains are interdigitated and form extensive quaternary interactions that occlude surfaces known in other coronaviruses to bind protein receptors. These features, along with the location of the two protease sites known to be important for coronavirus entry, provide a structural basis to support a model of membrane fusion mediated by progressive S protein destabilization through receptor binding and proteolytic cleavage. These studies should also serve as a foundation for the structure-based design of betacoronavirus vaccine immunogens.


Nature | 2017

Open and closed structures reveal allostery and pliability in the HIV-1 envelope spike

Gabriel Ozorowski; Jesper Pallesen; Natalia de Val; Dmitry Lyumkis; Christopher A. Cottrell; Jonathan L. Torres; Jeffrey Copps; Robyn L. Stanfield; Albert Cupo; Pavel Pugach; John P. Moore; Ian A. Wilson; Andrew B. Ward

For many enveloped viruses, binding to a receptor(s) on a host cell acts as the first step in a series of events culminating in fusion with the host cell membrane and transfer of genetic material for replication. The envelope glycoprotein (Env) trimer on the surface of HIV is responsible for receptor binding and fusion. Although Env can tolerate a high degree of mutation in five variable regions (V1–V5), and also at N-linked glycosylation sites that contribute roughly half the mass of Env, the functional sites for recognition of receptor CD4 and co-receptor CXCR4/CCR5 are conserved and essential for viral fitness. Soluble SOSIP Env trimers are structural and antigenic mimics of the pre-fusion native, surface-presented Env, and are targets of broadly neutralizing antibodies. Thus, they are attractive immunogens for vaccine development. Here we present high-resolution cryo-electron microscopy structures of subtype B B41 SOSIP Env trimers in complex with CD4 and antibody 17b, or with antibody b12, at resolutions of 3.7 Å and 3.6 Å, respectively. We compare these to cryo-electron microscopy reconstructions of B41 SOSIP Env trimers with no ligand or in complex with either CD4 or the CD4-binding-site antibody PGV04 at 5.6 Å, 5.2 Å and 7.4 Å resolution, respectively. Consequently, we present the most complete description yet, to our knowledge, of the CD4–17b-induced intermediate and provide the molecular basis of the receptor-binding-induced conformational change required for HIV-1 entry into host cells. Both CD4 and b12 induce large, previously uncharacterized conformational rearrangements in the gp41 subunits, and the fusion peptide becomes buried in a newly formed pocket. These structures provide key details on the biological function of the type I viral fusion machine from HIV-1 as well as new templates for inhibitor design.


Cell Reports | 2016

Antibody Treatment of Ebola and Sudan Virus Infection via a Uniquely Exposed Epitope within the Glycoprotein Receptor-Binding Site

Katie A. Howell; Xiangguo Qiu; Jennifer M. Brannan; Christopher Bryan; Edgar Davidson; Frederick W. Holtsberg; Anna Z. Wec; Sergey Shulenin; Julia E. Biggins; Robin Douglas; Sven Enterlein; Hannah L. Turner; Jesper Pallesen; Charles D. Murin; Shihua He; Andrea Kroeker; Hong Vu; Andrew S. Herbert; Marnie L. Fusco; Elisabeth K. Nyakatura; Jonathan R. Lai; Zhen Yong Keck; Steven K. H. Foung; Erica Ollmann Saphire; Larry Zeitlin; Andrew B. Ward; Kartik Chandran; Benjamin J. Doranz; Gary P. Kobinger; John M. Dye

Summary Previous efforts to identify cross-neutralizing antibodies to the receptor-binding site (RBS) of ebolavirus glycoproteins have been unsuccessful, largely because the RBS is occluded on the viral surface. We report a monoclonal antibody (FVM04) that targets a uniquely exposed epitope within the RBS; cross-neutralizes Ebola (EBOV), Sudan (SUDV), and, to a lesser extent, Bundibugyo viruses; and shows protection against EBOV and SUDV in mice and guinea pigs. The antibody cocktail ZMapp™ is remarkably effective against EBOV (Zaire) but does not cross-neutralize other ebolaviruses. By replacing one of the ZMapp™ components with FVM04, we retained the anti-EBOV efficacy while extending the breadth of protection to SUDV, thereby generating a cross-protective antibody cocktail. In addition, we report several mutations at the base of the ebolavirus glycoprotein that enhance the binding of FVM04 and other cross-reactive antibodies. These findings have important implications for pan-ebolavirus vaccine development and defining broadly protective antibody cocktails.


Nature microbiology | 2017

An HIV-1 antibody from an elite neutralizer implicates the fusion peptide as a site of vulnerability

Marit J. van Gils; Tom L. G. M. van den Kerkhof; Gabriel Ozorowski; Christopher A. Cottrell; Devin Sok; Matthias Pauthner; Jesper Pallesen; Natalia de Val; Anila Yasmeen; Steven W. de Taeye; Anna Schorcht; Stephanie Gumbs; Inez Johanna; Karen L. Saye-Francisco; Chi-Hui Liang; Elise Landais; Xiaoyan Nie; Laura K. Pritchard; Max Crispin; Garnett Kelsoe; Ian A. Wilson; Hanneke Schuitemaker; Per Johan Klasse; John P. Moore; Dennis R. Burton; Andrew B. Ward; Rogier W. Sanders

The induction by vaccination of broadly neutralizing antibodies (bNAbs) capable of neutralizing various HIV-1 viral strains is challenging, but understanding how a subset of HIV-infected individuals develops bNAbs may guide immunization strategies. Here, we describe the isolation and characterization of the bNAb ACS202 from an elite neutralizer that recognizes a new, trimer-specific and cleavage-dependent epitope at the gp120–gp41 interface of the envelope glycoprotein (Env), involving the glycan N88 and the gp41 fusion peptide. In addition, an Env trimer, AMC011 SOSIP.v4.2, based on early virus isolates from the same elite neutralizer, was constructed, and its structure by cryo-electron microscopy at 6.2 Å resolution reveals a closed, pre-fusion conformation similar to that of the BG505 SOSIP.664 trimer. The availability of a native-like Env trimer and a bNAb from the same elite neutralizer provides the opportunity to design vaccination strategies aimed at generating similar bNAbs against a key functional site on HIV-1.


Nature microbiology | 2016

Structures of Ebola virus GP and sGP in complex with therapeutic antibodies

Jesper Pallesen; Charles D. Murin; Natalia de Val; Christopher A. Cottrell; Kathryn M. Hastie; Hannah L. Turner; Marnie L. Fusco; Andrew I. Flyak; Larry Zeitlin; James E. Crowe; Kristian G. Andersen; Erica Ollmann Saphire; Andrew B. Ward

The Ebola virus (EBOV) GP gene encodes two glycoproteins. The major product is a soluble, dimeric glycoprotein (sGP) that is secreted abundantly. Despite the abundance of sGP during infection, little is known regarding its structure or functional role. A minor product, resulting from transcriptional editing, is the transmembrane-anchored, trimeric viral surface glycoprotein (GP). GP mediates attachment to and entry into host cells, and is the intended target of antibody therapeutics. Because large portions of sequence are shared between GP and sGP, it has been hypothesized that sGP may potentially subvert the immune response or may contribute to pathogenicity. In this study, we present cryo-electron microscopy structures of GP and sGP in complex with GP-specific and GP/sGP cross-reactive antibodies undergoing human clinical trials. The structure of the sGP dimer presented here, in complex with both an sGP-specific antibody and a GP/sGP cross-reactive antibody, permits us to unambiguously assign the oligomeric arrangement of sGP and compare its structure and epitope presentation to those of GP. We also provide biophysical evaluation of naturally occurring GP/sGP mutations that fall within the footprints identified by our high-resolution structures. Taken together, our data provide a detailed and more complete picture of the accessible Ebolavirus glycoprotein landscape and a structural basis to evaluate patient and vaccine antibody responses towards differently structured products of the GP gene.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen.

Jesper Pallesen; Nianshuang Wang; Kizzmekia S. Corbett; Daniel Wrapp; Robert N. Kirchdoerfer; Hannah L. Turner; Christopher A. Cottrell; Michelle M. Becker; Lingshu Wang; Wei Shi; Wing-Pui Kong; Erica L. Andres; Arminja N. Kettenbach; Mark R. Denison; James D. Chappell; Barney S. Graham; Andrew B. Ward; Jason S. McLellan

Significance Coronaviruses such as Middle East respiratory syndrome coronavirus (MERS-CoV) cause severe respiratory distress with high fatality rates. The spike (S) glycoprotein is a determinant of host range and is the target of neutralizing antibodies and subunit vaccine development. We describe an engineering strategy for stabilization of soluble S proteins in the prefusion conformation, which results in greatly increased expression, conformational homogeneity, and elicitation of potent antibody responses. Cryo-EM structures of the stabilized MERS-CoV S protein in complex with a stem-directed neutralizing antibody provide a molecular basis for host-cell protease requirements and identify a site of immune pressure. We also defined four conformational states of the trimer wherein each receptor-binding domain is either packed together at the membrane-distal apex or rotated into a receptor-accessible conformation. Middle East respiratory syndrome coronavirus (MERS-CoV) is a lineage C betacoronavirus that since its emergence in 2012 has caused outbreaks in human populations with case-fatality rates of ∼36%. As in other coronaviruses, the spike (S) glycoprotein of MERS-CoV mediates receptor recognition and membrane fusion and is the primary target of the humoral immune response during infection. Here we use structure-based design to develop a generalizable strategy for retaining coronavirus S proteins in the antigenically optimal prefusion conformation and demonstrate that our engineered immunogen is able to elicit high neutralizing antibody titers against MERS-CoV. We also determined high-resolution structures of the trimeric MERS-CoV S ectodomain in complex with G4, a stem-directed neutralizing antibody. The structures reveal that G4 recognizes a glycosylated loop that is variable among coronaviruses and they define four conformational states of the trimer wherein each receptor-binding domain is either tightly packed at the membrane-distal apex or rotated into a receptor-accessible conformation. Our studies suggest a potential mechanism for fusion initiation through sequential receptor-binding events and provide a foundation for the structure-based design of coronavirus vaccines.


bioRxiv | 2018

Potent anti-influenza H7 human monoclonal antibody induces separation of hemagglutinin receptor binding head domains

Hannah L. Turner; Jesper Pallesen; Shanshan Lang; Sandhya Bangaru; Sarah M. Urata; Sheng Li; Christopher A. Cottrell; Charles Bowman; James E. Crowe; Ian A. Wilson; Andrew B. Ward

Seasonal influenza virus infections can cause significant morbidity and mortality, but the threat from emergence of a new pandemic influenza strain might have potentially even more devastating consequences. As such, there is intense interest in isolating and characterizing potent neutralizing antibodies that target the hemagglutinin (HA) viral surface glycoprotein. Here, we use cryo-electron microscopy to decipher the mechanism of action of a potent HA head-directed monoclonal antibody bound to an influenza H7 HA. The epitope of the antibody is not solvent accessible in the compact, pre-fusion conformation that typifies all HA structures to date. Instead, the antibody binds between HA head protomers to an epitope that must be partly or transiently exposed in the pre-fusion conformation. The “breathing” of the HA protomers is implied by the exposure of this epitope, which is consistent with metastability of class I fusion proteins. This structure likely therefore represents an early structural intermediate in the viral fusion process. Understanding the extent of transient exposure of conserved neutralizing epitopes also may lead to new opportunities to combat influenza that have not been appreciated previously. Author Summary A transiently exposed epitope on influenza H7 hemagglutinin represents a new target for neutralizing antibodies.


Scientific Reports | 2018

Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis

Robert N. Kirchdoerfer; Nianshuang Wang; Jesper Pallesen; Daniel Wrapp; Hannah L. Turner; Christopher A. Cottrell; Kizzmekia S. Corbett; Barney S. Graham; Jason S. McLellan; Andrew B. Ward

Severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 as a highly transmissible pathogenic human betacoronavirus. The viral spike glycoprotein (S) utilizes angiotensin-converting enzyme 2 (ACE2) as a host protein receptor and mediates fusion of the viral and host membranes, making S essential to viral entry into host cells and host species tropism. As SARS-CoV enters host cells, the viral S is believed to undergo a number of conformational transitions as it is cleaved by host proteases and binds to host receptors. We recently developed stabilizing mutations for coronavirus spikes that prevent the transition from the pre-fusion to post-fusion states. Here, we present cryo-EM analyses of a stabilized trimeric SARS-CoV S, as well as the trypsin-cleaved, stabilized S, and its interactions with ACE2. Neither binding to ACE2 nor cleavage by trypsin at the S1/S2 cleavage site impart large conformational changes within stabilized SARS-CoV S or expose the secondary cleavage site, S2′.


PLOS Pathogens | 2018

Structural and immunologic correlates of chemically stabilized HIV-1 envelope glycoproteins.

Torben Schiffner; Jesper Pallesen; Rebecca A. Russell; Jonathan Dodd; Natalia de Val; Celia C. LaBranche; David C. Montefiori; Georgia D. Tomaras; Xiaoying Shen; Scarlett L. Harris; Amin E. Moghaddam; Oleksandr Kalyuzhniy; Rogier W. Sanders; Laura E. McCoy; John P. Moore; Andrew B. Ward; Quentin J. Sattentau

Inducing broad spectrum neutralizing antibodies against challenging pathogens such as HIV-1 is a major vaccine design goal, but may be hindered by conformational instability within viral envelope glycoproteins (Env). Chemical cross-linking is widely used for vaccine antigen stabilization, but how this process affects structure, antigenicity and immunogenicity is poorly understood and its use remains entirely empirical. We have solved the first cryo-EM structure of a cross-linked vaccine antigen. The 4.2 Å structure of HIV-1 BG505 SOSIP soluble recombinant Env in complex with a CD4 binding site-specific broadly neutralizing antibody (bNAb) Fab fragment reveals how cross-linking affects key properties of the trimer. We observed density corresponding to highly specific glutaraldehyde (GLA) cross-links between gp120 monomers at the trimer apex and between gp120 and gp41 at the trimer interface that had strikingly little impact on overall trimer conformation, but critically enhanced trimer stability and improved Env antigenicity. Cross-links were also observed within gp120 at sites associated with the N241/N289 glycan hole that locally modified trimer antigenicity. In immunogenicity studies, the neutralizing antibody response to cross-linked trimers showed modest but significantly greater breadth against a global panel of difficult-to-neutralize Tier-2 heterologous viruses. Moreover, the specificity of autologous Tier-2 neutralization was modified away from the N241/N289 glycan hole, implying a novel specificity. Finally, we have investigated for the first time T helper cell responses to next-generation soluble trimers, and report on vaccine-relevant immunodominant responses to epitopes within BG505 that are modified by cross-linking. Elucidation of the structural correlates of a cross-linked viral glycoprotein will allow more rational use of this methodology for vaccine design, and reveals a strategy with promise for eliciting neutralizing antibodies needed for an effective HIV-1 vaccine.


Cell | 2018

Systematic Analysis of Monoclonal Antibodies against Ebola Virus GP Defines Features that Contribute to Protection

Erica Ollmann Saphire; Sharon L. Schendel; Marnie L. Fusco; Karthik Gangavarapu; Bronwyn M. Gunn; Anna Z. Wec; Peter Halfmann; Jennifer M. Brannan; Andrew S. Herbert; Xiangguo Qiu; Kshitij Wagh; Shihua He; Elena E. Giorgi; James Theiler; Kathleen B.J. Pommert; Tyler B. Krause; Hannah L. Turner; Charles D. Murin; Jesper Pallesen; Edgar Davidson; Rafi Ahmed; M. Javad Aman; Alexander Bukreyev; Dennis R. Burton; James E. Crowe; Carl W. Davis; George Georgiou; Florian Krammer; Christos A. Kyratsous; Jonathan R. Lai

Collaboration


Dive into the Jesper Pallesen's collaboration.

Top Co-Authors

Avatar

Andrew B. Ward

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hannah L. Turner

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Barney S. Graham

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Charles D. Murin

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James E. Crowe

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Marnie L. Fusco

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge