Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jesper Reinholdt is active.

Publication


Featured researches published by Jesper Reinholdt.


Apmis | 1996

Biological significance of IgA1 proteases in bacterial colonization and pathogenesis: critical evaluation of experimental evidence*

Mogens Kilian; Jesper Reinholdt; Hans Lomholt; Knud Poulsen; Ellen V. G. Frandsen

IgA1 protease activity, which allows bacteria to cleave human IgA1 in the hinge region, represents a striking example of convergent evolution of a specific property in bacteria. Although it has been known since 1979 that IgA1 protease is produced by the three leading causes of bacterial meningitis in addition to important urogenital pathogens and some members of the oropharyngeal flora, the exact role of this enzyme in bacterial pathogenesis is still incompletely understood owing to lack of a satisfactory animal model. Cleavage of IgA1 by these post‐proline endopeptidases efficiently separates the monomeric antigen‐binding fragments from the secondary effector functions of the IgA1 antibody molecule. Several in vivo and in vitro observations indicate that the enzymes are important for the ability of bacteria to colonize mucosal membranes in the presence of S‐IgA antibodies. Furthermore, the extensive cleavage of IgA sometimes observed in vivo, suggests that IgA1 protease activity results in a local functional IgA deficiency that may facilitate colonization of other microorganisms and the penetration of potential allergens. It has been hypothesized that IgA1 protease activity of Haemophilus influenzae, Neisseria meningitidis, and Streptococcus pneumoniae, under special immunological circumstances, allows these bacteria to take advantage of specific IgA1 antibodies in a strategy to evade other immune factors of the human body. The decisive factor is the balance between IgA antibodies against surface antigens of the respective bacteria and their IgA1 protease. Recent studies have shown that serine‐type IgA1 proteases of H. influenzae, meningococci, and gonococci belong to a family of proteins used by a diverse group of Gramnegative bacteria for colonization and invasion.


Science Translational Medicine | 2016

Aggregatibacter actinomycetemcomitans–induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis

Maximilian F. Konig; Loreto Abusleme; Jesper Reinholdt; Robert J. Palmer; Ricardo P. Teles; Kevon Sampson; Antony Rosen; Peter Nigrovic; Jeremy Sokolove; Jon T. Giles; Niki M. Moutsopoulos; Felipe Andrade

Aggregatibacter actinomycetemcomitans generates citrullinated autoantigens involved in rheumatoid arthritis through its pore-forming toxin leukotoxin A. A joint effect of bacteria and genetics Although rheumatoid arthritis is an autoimmune disease, scientists have long suspected that bacterial infections (and in particular, periodontal infections) may play a role in its pathogenesis. Konig et al. now demonstrate that a particular periodontal pathogen called Aggregatibacter actinomycetemcomitans (Aa) induces changes in neutrophil function, including hypercitrullination of host proteins, an abnormality that is also observed in the joints of patients with rheumatoid arthritis. Moreover, the effect of HLA-DRB1, an allele associated with increased risk of rheumatoid arthritis, was only observed in patients exposed to Aa, suggesting the possibility of eventually using these results to identify and possibly even treat high-risk patients. A bacterial etiology of rheumatoid arthritis (RA) has been suspected since the beginnings of modern germ theory. Recent studies implicate mucosal surfaces as sites of disease initiation. The common occurrence of periodontal dysbiosis in RA suggests that oral pathogens may trigger the production of disease-specific autoantibodies and arthritis in susceptible individuals. We used mass spectrometry to define the microbial composition and antigenic repertoire of gingival crevicular fluid in patients with periodontal disease and healthy controls. Periodontitis was characterized by the presence of citrullinated autoantigens that are primary immune targets in RA. The citrullinome in periodontitis mirrored patterns of hypercitrullination observed in the rheumatoid joint, implicating this mucosal site in RA pathogenesis. Proteomic signatures of several microbial species were detected in hypercitrullinated periodontitis samples. Among these, Aggregatibacter actinomycetemcomitans (Aa), but not other candidate pathogens, induced hypercitrullination in host neutrophils. We identified the pore-forming toxin leukotoxin A (LtxA) as the molecular mechanism by which Aa triggers dysregulated activation of citrullinating enzymes in neutrophils, mimicking membranolytic pathways that sustain autoantigen citrullination in the RA joint. Moreover, LtxA induced changes in neutrophil morphology mimicking extracellular trap formation, thereby releasing the hypercitrullinated cargo. Exposure to leukotoxic Aa strains was confirmed in patients with RA and was associated with both anticitrullinated protein antibodies and rheumatoid factor. The effect of human lymphocyte antigen–DRB1 shared epitope alleles on autoantibody positivity was limited to RA patients who were exposed to Aa. These studies identify the periodontal pathogen Aa as a candidate bacterial trigger of autoimmunity in RA.


Journal of Immunology | 2002

Isolation and Detection of Human IgA Using a Streptococcal IgA-Binding Peptide

Charlotta Sandin; Sara Linse; Thomas Areschoug; Jenny M. Woof; Jesper Reinholdt; Gunnar Lindahl

Bacterial proteins that bind to the Fc part of IgG have found widespread use in immunology. A similar protein suitable for the isolation and detection of human IgA has not been described. Here, we show that a 50-residue synthetic peptide, designated streptococcal IgA-binding peptide (Sap) and derived from a streptococcal M protein, can be used for single-step affinity purification of human IgA. High affinity binding of IgA required the presence in Sap of a C-terminal cysteine residue, not present in the intact M protein. Passage of human serum through a Sap column caused depletion of >99% of the IgA, and elution of the column allowed quantitative recovery of highly purified IgA, for which the proportions of the IgA1 and IgA2 subclasses were the same as in whole serum. Moreover, immobilized Sap could be used for single-step purification of secretory IgA of both subclasses from human saliva, with a recovery of ∼45%. The Sap peptide could also be used to specifically detect IgA bound to Ag. Together, these data indicate that Sap is a versatile Fc-binding reagent that may open new possibilities for the characterization of human IgA.


Apmis | 2000

Resident aerobic microbiota of the adult human nasal cavity.

T. Tang Rasmussen; L. P. Kirkeby; Knud Poulsen; Jesper Reinholdt; Mogens Kilian

Recent evidence strongly suggests that the microbiota of the nasal cavity plays a crucial role in determining the reaction patterns of the mucosal and systemic immune system. However, little is known about the normal microbiota of the nasal cavity. The purpose of this study was to determine the microbiota in different parts of the nasal cavity and to develop and evaluate methods for this purpose. Samples were collected from 10 healthy adults by nasal washes and by swabbing of the mucosa through a sterile introduction device. Both methods gave results that were quantitatively and qualitatively reproducible, and revealed significant differences in the density of the nasal microbiota between individuals. The study revealed absence of Gram‐negative bacteria that are regular members of the commensal microbiota of the pharynx. Likewise, viridans type streptococci were sparsely represented. The nasal microbiota was dominated by species of the genera Corynebacterium, Aureobacterium, Rho‐dococcus, and Staphylococcus, including S. epidermis, S. capitis, S. hominis, S. haemolyticus, S. lugdu‐nensis and S. warneri. These studies show that the microbiota of the nasal cavity of adults is strikingly different from that of the pharynx, and that the nasal cavity is a primary habitat for several species of diphtheroids recognized as opportunistic pathogens. Under special circumstances, single species, including IgAl protease‐producing bacteria, may become predominant in a restricted area of the nasal mucosa.


Infection and Immunity | 2001

Population Dynamics of Streptococcus mitis in Its Natural Habitat

Jesper Hohwy; Jesper Reinholdt; Mogens Kilian

ABSTRACT The purpose of this study was to examine the genetic structure of the typical commensal Streptococcus mitisbiovar 1 in its natural habitat in the human oral cavity and pharynx and to investigate the role that selected microbial properties and host, spatial, and temporal factors play in determining the structure of the bacterial population. Consecutive samples were collected from buccal and pharyngeal mucosal surfaces of two infants, their four parents, and two elderly individuals over a period of approximately 1 year. A total of 751 isolates identified as S. mitisbiovar 1 were typed by restriction endonuclease analysis (REA) and representative clones were typed by multilocus enzyme electrophoresis (MLEE). The genetic diversity of the S. mitis biovar 1 isolates collected from single infant hosts over a period of 9 to 10 months was found to be between 0.69 and 0.76, which is considerably higher than that previously observed for intestinal populations ofEscherichia coli. The study provides evidence of the existence of both transient and persistent clones in adult individuals. In the two infants, however, none of 42 demonstrated clones were detected on more than a single occasion. Statistical calculations showed that the ability to persist was not distributed at random in theS. mitis biovar 1 population. However, neither immunoglobulin A1 protease activity nor the ability to bind α-amylase from saliva was a preferential characteristic of persistent genotypes. In contrast to current concepts of climax ecosystems, the species niche in the habitat appears to be maintained predominantly by a succession of clones rather than by stable strains. Several lines of evidence suggest that the major origin of “new” clones is the many other habitats in the respiratory tract that are occupied by this species.


Acta Obstetricia et Gynecologica Scandinavica | 2005

Immunoglobulin levels and phagocytes in the cervical mucus plug at term of pregnancy

Merete Hein; Astrid Christine Petersen; Rikke Bek Helmig; Niels Uldbjerg; Jesper Reinholdt

Background.  To characterize the potential for adaptive immune protection in cervical mucus plugs with respect to immunoglobulin isotypes and effector cells (phagocytes).


Journal of Dental Research | 1987

Interference of IgA Protease with the Effect of Secretory IgA on Adherence of Oral Streptococci to Saliva-coated Hydroxyapatite

Jesper Reinholdt; Mogens Kilian

It has previously been shown that secretory immunoglobulin A (S-IgA) influences the sorption of oral streptococci to hydroxyapatite as well as to cell surfaces. The present experiments demonstrate that bacterial IgA proteases, which cleave S-IgA in the hinge region, are capable of interfering with this mechanism. This result was obtained with an IgAI specific protease from Hæmophilus influenzae and with a protease from Clostridium ramosum that cleaves IgAI as well as IgA2 of A2m(I) allotype. The modulation of S-IgA-mediated effects by IgA proteases were studied by means of an in vitro method which permits quantitative determination of the sorption of radiolabeled oral bacteria to hydroxyapatite beads. Other authors have suggested that IgA protease-mediated effects may be explained by a strongly reduced antigen-binding capacity of released Fabα fragments. Here we present evidence that streptococci, after exposure to specific S-IgA and IgA protease, are coated with Fab α fragments.


Clinical and Vaccine Immunology | 2000

Immunoglobulins in Nasal Secretions of Healthy Humans: Structural Integrity of Secretory Immunoglobulin A1 (IgA1) and Occurrence of Neutralizing Antibodies to IgA1 Proteases of Nasal Bacteria

Line Kirkeby; Trine Tang Rasmussen; Jesper Reinholdt; Mogens Kilian

ABSTRACT Certain bacteria, including overt pathogens as well as commensals, produce immunoglobulin A1 (IgA1) proteases. By cleaving IgA1, including secretory IgA1, in the hinge region, these enzymes may interfere with the barrier functions of mucosal IgA antibodies, as indicated by experiments in vitro. Previous studies have suggested that cleavage of IgA1 in nasal secretions may be associated with the development and perpetuation of atopic disease. To clarify the potential effect of IgA1 protease-producing bacteria in the nasal cavity, we have analyzed immunoglobulin isotypes in nasal secretions of 11 healthy humans, with a focus on IgA, and at the same time have characterized and quantified IgA1 protease-producing bacteria in the nasal flora of the subjects. Samples in the form of nasal wash were collected by using a washing liquid that contained lithium as an internal reference. Dilution factors and, subsequently, concentrations in undiluted secretions could thereby be calculated. IgA, mainly in the secretory form, was found by enzyme-linked immunosorbent assay to be the dominant isotype in all subjects, and the vast majority of IgA (median, 91%) was of the A1 subclass, corroborating results of previous analyses at the level of immunoglobulin-producing cells. Levels of serum-type immunoglobulins were low, except for four subjects in whom levels of IgG corresponded to 20 to 66% of total IgA. Cumulative levels of IgA, IgG, and IgM in undiluted secretions ranged from 260 to 2,494 (median, 777) μg ml−1. IgA1 protease-producing bacteria (Haemophilus influenzae, Streptococcus pneumoniae, orStreptococcus mitis biovar 1) were isolated from the nasal cavities of seven subjects at 2.1 × 103 to 7.2 × 106 CFU per ml of undiluted secretion, corresponding to 0.2 to 99.6% of the flora. Nevertheless, α-chain fragments characteristic of IgA1 protease activity were not detected in secretions from any subject by immunoblotting. Neutralizing antibodies to IgA1 proteases of autologous isolates were detected in secretions from five of the seven subjects but not in those from two subjects harboring IgA1 protease-producing S. mitis biovar 1. α-chain fragments different from Fcα and Fdα were detected in some samples, possibly reflecting nonspecific proteolytic activity of microbial or host origin. These results add to previous evidence for a role of secretory immunity in the defense of the nasal mucosa but do not help identify conditions under which bacterial IgA1 proteases may interfere with this defense.


Cellular Microbiology | 2012

Leukotoxin from Aggregatibacter actinomycetemcomitans causes shrinkage and P2X receptor-dependent lysis of human erythrocytes

Peter Svenssen Munksgaard; Thomas Vorup-Jensen; Jesper Reinholdt; Carl Martin Söderström; Knud Poulsen; Jens Leipziger; Helle A. Praetorius; Marianne Skals

Leukotoxin (LtxA) is a virulence factor secreted by the bacterium Aggregatibacter actinomycetemcomitans, which can cause localized aggressive periodontitis and endocarditis. LtxA belongs to the repeat‐in‐toxin (RTX) family of exotoxins of which other members inflict lysis by formation of membrane pores. Recently, we documented that the haemolytic process induced by another RTX toxin [α‐haemolysin (HlyA) from Escherichia coli] requires P2X receptor activation and consists of sequential cell shrinkage and swelling. In contrast, the cellular and molecular mechanisms of LtxA‐mediated haemolysis are not fully understood. Here, we investigate the effect of LtxA on erythrocyte volume and whether P2 receptors also play a part in LtxA‐mediated haemolysis. We observed that LtxA initially decreases the cell size, followed by a gradual rise in volume until the cell finally lyses. Moreover, LtxA triggers phosphatidylserine (PS) exposure in the erythrocyte membrane and both the shrinkage and the PS‐exposure is preceded by increments in the intracellular Ca2+ concentration ([Ca2+]i). Interestingly, LtxA‐mediated haemolysis is significantly potentiated by ATP release and P2X receptor activation in human erythrocytes. Furthermore, the LtxA‐induced [Ca2+]i increase and following volume changes partially depend on P2 receptor activation. Theseobservations imply that intervention against local P2‐mediated auto‐ and paracrine signalling may prevent LtxA‐mediated cell damage.


Journal of Biological Chemistry | 2014

Bacterial RTX toxins allow acute ATP release from human erythrocytes directly through the toxin pore

Marianne Skals; Randi G. Bjaelde; Jesper Reinholdt; Knud Poulsen; Brian S. Vad; Daniel E. Otzen; Jens Leipziger; Helle A. Praetorius

Background: Hemolysis induced by the two RTX toxins HlyA and LtxA depends on ATP receptor activation. Results: HlyA and LtxA result in ATP release from human erythrocytes, which was unrelated to the main suggested ATP release pathway pannexin 1. Conclusion: ATP is released through a toxin pore. Significance: Adds new insights to the mechanism of these toxins. ATP is as an extracellular signaling molecule able to amplify the cell lysis inflicted by certain bacterial toxins including the two RTX toxins α-hemolysin (HlyA) from Escherichia coli and leukotoxin A (LtxA) from Aggregatibacter actinomycetemcomitans. Inhibition of P2X receptors completely blocks the RTX toxin-induced hemolysis over a larger concentration range. It is, however, at present not known how the ATP that provides the amplification is released from the attacked cells. Here we show that both HlyA and LtxA trigger acute release of ATP from human erythrocytes that preceded and were not caused by cell lysis. This early ATP release did not occur via previously described ATP-release pathways in the erythrocyte. Both HlyA and LtxA were capable of triggering ATP release in the presence of the pannexin 1 blockers carbenoxolone and probenecid, and the HlyA-induced ATP release was found to be similar in erythrocytes from pannexin 1 wild type and knock-out mice. Moreover, the voltage-dependent anion channel antagonist TRO19622 had no effect on ATP release by either of the toxins. Finally, we showed that both HlyA and LtxA were able to release ATP from ATP-loaded lipid (1-palmitoyl-2-oleoyl-phosphatidylcholine) vesicles devoid of any erythrocyte channels or transporters. Again we were able to show that this happened in a non-lytic fashion, using calcein-containing vesicles as controls. These data show that both toxins incorporate into lipid vesicles and allow ATP to be released. We suggest that both toxins cause acute ATP release by letting ATP pass the toxin pores in both human erythrocytes and artificial membranes.

Collaboration


Dive into the Jesper Reinholdt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Enevold

Copenhagen University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge