Jesper Sollerman
Stockholm University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jesper Sollerman.
The Astrophysical Journal | 2003
John L. Tonry; Brian Paul Schmidt; Brian J. Barris; Pablo Candia; Peter M. Challis; Alejandro Clocchiatti; Alison L. Coil; Alexei V. Filippenko; Peter Marcus Garnavich; Craig J. Hogan; Stephen T. Holland; Saurabh W. Jha; Robert P. Kirshner; Kevin Krisciunas; Bruno Leibundgut; Weidong Li; Thomas Matheson; Mark M. Phillips; Adam G. Riess; Robert A. Schommer; R. Chris Smith; Jesper Sollerman; Jason Spyromilio; Christopher W. Stubbs; Nicholas B. Suntzeff
The High-z Supernova Search Team has discovered and observed eight new supernovae in the redshift interval z = 0.3-1.2. These independent observations, analyzed by similar but distinct methods, confirm the results of Riess and Perlmutter and coworkers that supernova luminosity distances imply an accelerating universe. More importantly, they extend the redshift range of consistently observed Type Ia supernovae (SNe Ia) to z ≈ 1, where the signature of cosmological effects has the opposite sign of some plausible systematic effects. Consequently, these measurements not only provide another quantitative confirmation of the importance of dark energy, but also constitute a powerful qualitative test for the cosmological origin of cosmic acceleration. We find a rate for SN Ia of (1.4 ± 0.5) × 10-4 h3 Mpc-3 yr-1 at a mean redshift of 0.5. We present distances and host extinctions for 230 SN Ia. These place the following constraints on cosmological quantities: if the equation of state parameter of the dark energy is w = -1, then H0t0 = 0.96 ± 0.04, and ΩΛ - 1.4ΩM = 0.35 ± 0.14. Including the constraint of a flat universe, we find ΩM = 0.28 ± 0.05, independent of any large-scale structure measurements. Adopting a prior based on the Two Degree Field (2dF) Redshift Survey constraint on ΩM and assuming a flat universe, we find that the equation of state parameter of the dark energy lies in the range -1.48 -1, we obtain w < -0.73 at 95% confidence. These constraints are similar in precision and in value to recent results reported using the WMAP satellite, also in combination with the 2dF Redshift Survey.
Nature | 2003
J. Hjorth; Jesper Sollerman; P. Møller; Johan Peter Uldall Fynbo; S. E. Woosley; C. Kouveliotou; Nial R. Tanvir; J. Greiner; Michael I. Andersen; A. J. Castro-Tirado; Jose Maria Castro Ceron; Andrew S. Fruchter; J. Gorosabel; P. Jakobsson; L. Kaper; Sylvio Klose; Nicola Masetti; Holger Pedersen; E. Pian; Eliana Palazzi; James E. Rhoads; E. Rol; Edward van den Heuvel; Paul M. Vreeswijk; Darach Watson; R. A. M. J. Wijers
Over the past five years evidence has mounted that long-duration (>2 s) γ-ray bursts (GRBs)—the most luminous of all astronomical explosions—signal the collapse of massive stars in our Universe. This evidence was originally based on the probable association of one unusual GRB with a supernova, but now includes the association of GRBs with regions of massive star formation in distant galaxies, the appearance of supernova-like ‘bumps’ in the optical afterglow light curves of several bursts and lines of freshly synthesized elements in the spectra of a few X-ray afterglows. These observations support, but do not yet conclusively demonstrate, the idea that long-duration GRBs are associated with the deaths of massive stars, presumably arising from core collapse. Here we report evidence that a very energetic supernova (a hypernova) was temporally and spatially coincident with a GRB at redshift z = 0.1685. The timing of the supernova indicates that it exploded within a few days of the GRB, strongly suggesting that core-collapse events can give rise to GRBs, thereby favouring the ‘collapsar’ model.
The Astrophysical Journal | 2007
William Michael Wood-Vasey; Gajus A. Miknaitis; Christopher W. Stubbs; Saurabh W. Jha; Adam G. Riess; Peter Marcus Garnavich; Robert P. Kirshner; C. A. Aguilera; Andrew Cameron Becker; J. W. Blackman; Stephane Blondin; Peter M. Challis; Alejandro Clocchiatti; A. Conley; Ricardo Alberto Covarrubias; Tamara M. Davis; A. V. Filippenko; Ryan J. Foley; Arti Garg; Malcolm Stuart Hicken; Kevin Krisciunas; Bruno Leibundgut; Weidong Li; Thomas Matheson; Antonino Miceli; Gautham S. Narayan; G. Pignata; Jose Luis Palacio Prieto; A. Rest; Maria Elena Salvo
We present constraints on the dark energy equation-of-state parameter, w = P/(rho c(2)), using 60 SNe Ia fromthe ESSENCE supernova survey. We derive a set of constraints on the nature of the dark energy assuming a flat universe. By including constraints on (Omega(M), w) from baryon acoustic oscillations, we obtain a value for a static equation-of-state parameter w = -1:05(-0.12)(+0: 13) (stat 1 sigma) +/- 0: 13 (sys) and Omega(M) = 0:274(-0.020)(+0:033) (stat 1 sigma) with a bestfit chi(2)/dof of 0.96. These results are consistent with those reported by the Supernova Legacy Survey from the first year of a similar program measuring supernova distances and redshifts. We evaluate sources of systematic error that afflict supernova observations and present Monte Carlo simulations that explore these effects. Currently, the largest systematic with the potential to affect our measurements is the treatment of extinction due to dust in the supernova host galaxies. Combining our set of ESSENCE SNe Ia with the first-results Supernova Legacy Survey SNe Ia, we obtain a joint constraint of w = -1:07(-0: 09)(+0:09) (stat 1 sigma) +/- 0: 13 ( sys), Omega(M) 0:267(-0:028)(+0:028) (stat 1 sigma) with a best-fit chi(2)/dof of 0.91. The current global SN Ia data alone rule out empty (Omega(M) = 0), matter-only Omega(M) = 0: 3, and Omega(M) = 1 universes at > 4.5 sigma. The current SN Ia data are fully consistent with a cosmological constant.
Astronomy and Astrophysics | 2014
M. Betoule; Richard Kessler; J. Guy; Jennifer J. Mosher; D. Hardin; Rahul Biswas; P. Astier; P. El-Hage; M. Konig; S. E. Kuhlmann; John P. Marriner; R. Pain; Nicolas Regnault; C. Balland; Bruce A. Bassett; Peter J. Brown; Heather Campbell; R. G. Carlberg; F. Cellier-Holzem; D. Cinabro; A. Conley; C. B. D'Andrea; D. L. DePoy; Mamoru Doi; Richard S. Ellis; S. Fabbro; A. V. Filippenko; Ryan J. Foley; Joshua A. Frieman; D. Fouchez
Aims. We present cosmological constraints from a joint analysis of type Ia supernova (SN Ia) observations obtained by the SDSS-II and SNLS collaborations. The dataset includes several low-redshift samples (z< 0.1), all three seasons from the SDSS-II (0.05 <z< 0.4), and three years from SNLS (0.2 <z< 1), and it totals 740 spectroscopically confirmed type Ia supernovae with high-quality light curves. Methods. We followed the methods and assumptions of the SNLS three-year data analysis except for the following important improvements: 1) the addition of the full SDSS-II spectroscopically-confirmed SN Ia sample in both the training of the SALT2 light-curve model and in the Hubble diagram analysis (374 SNe); 2) intercalibration of the SNLS and SDSS surveys and reduced systematic uncertainties in the photometric calibration, performed blindly with respect to the cosmology analysis; and 3) a thorough investigation of systematic errors associated with the SALT2 modeling of SN Ia light curves. Results. We produce recalibrated SN Ia light curves and associated distances for the SDSS-II and SNLS samples. The large SDSS-II sample provides an effective, independent, low-z anchor for the Hubble diagram and reduces the systematic error from calibration systematics in the low-z SN sample. For a flat ΛCDM cosmology, we find Ωm =0.295 ± 0.034 (stat+sys), a value consistent with the most recent cosmic microwave background (CMB) measurement from the Planck and WMAP experiments. Our result is 1.8σ (stat+sys) different than the previously published result of SNLS three-year data. The change is due primarily to improvements in the SNLS photometric calibration. When combined with CMB constraints, we measure a constant dark-energy equation of state parameter w =−1.018 ± 0.057 (stat+sys) for a flat universe. Adding baryon acoustic oscillation distance measurements gives similar constraints: w =−1.027 ± 0.055. Our supernova measurements provide the most stringent constraints to date on the nature of dark energy.
The Astrophysical Journal | 2007
Tamara M. Davis; Edvard Mortsell; Jesper Sollerman; Andrew Cameron Becker; Stephane Blondin; Peter M. Challis; Alejandro Clocchiatti; Alexei V. Filippenko; Ryan J. Foley; Peter Marcus Garnavich; Saurabh W. Jha; Kevin Krisciunas; Robert P. Kirshner; Bruno Leibundgut; Weidong Li; Thomas Matheson; Gajus A. Miknaitis; G. Pignata; A. Rest; Adam G. Riess; Brian Paul Schmidt; R. C. Smith; Jason Spyromilio; Christopher W. Stubbs; Nicholas B. Suntzeff; John L. Tonry; William Michael Wood-Vasey; A. Zenteno
The first cosmological results from the ESSENCE supernova survey (Wood-Vasey and coworkers) are extended to a wider range of cosmological models including dynamical dark energy and nonstandard cosmological models. We fold in a greater number of external data sets such as the recent Higher-z release of high-redshift supernovae (Riess and coworkers), as well as several complementary cosmological probes. Model comparison statistics such as the Bayesian and Akaike information criteria are applied to gauge the worth of models. These statistics favor models that give a good fit with fewer parameters. Based on this analysis, the preferred cosmological model is the flat cosmological constant model, where the expansion history of the universe can be adequately described with only one free parameter describing the energy content of the universe. Among the more exotic models that provide good fits to the data, we note a preference for models whose best-fit parameters reduce them to the cosmological constant model.
Nature | 2006
E. Pian; Paolo A. Mazzali; N. Masetti; P. Ferrero; Sylvio Klose; Eliana Palazzi; Enrico Ramirez-Ruiz; S. E. Woosley; C. Kouveliotou; J. S. Deng; A. V. Filippenko; Ryan J. Foley; J. P. U. Fynbo; D. A. Kann; Weidong Li; J. Hjorth; K. Nomoto; Ferdinando Patat; Daniel Sauer; Jesper Sollerman; Paul M. Vreeswijk; E. W. Guenther; A. Levan; Paul T. O'Brien; Nial R. Tanvir; R. A. M. J. Wijers; Christophe Dumas; Olivier R. Hainaut; Diane S. Wong; Dietrich Baade
Long-duration γ-ray bursts (GRBs) are associated with type Ic supernovae that are more luminous than average and that eject material at very high velocities. Less-luminous supernovae were not hitherto known to be associated with GRBs, and therefore GRB–supernovae were thought to be rare events. Whether X-ray flashes—analogues of GRBs, but with lower luminosities and fewer γ-rays—can also be associated with supernovae, and whether they are intrinsically ‘weak’ events or typical GRBs viewed off the axis of the burst, is unclear. Here we report the optical discovery and follow-up observations of the type Ic supernova SN 2006aj associated with X-ray flash XRF 060218. Supernova 2006aj is intrinsically less luminous than the GRB–supernovae, but more luminous than many supernovae not accompanied by a GRB. The ejecta velocities derived from our spectra are intermediate between these two groups, which is consistent with the weakness of both the GRB output and the supernova radio flux. Our data, combined with radio and X-ray observations, suggest that XRF 060218 is an intrinsically weak and soft event, rather than a classical GRB observed off-axis. This extends the GRB–supernova connection to X-ray flashes and fainter supernovae, implying a common origin. Events such as XRF 060218 are probably more numerous than GRB–supernovae.
Nature | 2005
Neil Gehrels; Craig L. Sarazin; Paul T. O'Brien; Bing Zhang; Loius M. Barbier; S. D. Barthelmy; Alexander J. Blustin; David N. Burrows; J. Cannizzo; J. R. Cummings; Michael R. Goad; Stephen T. Holland; C. P. Hurkett; J. A. Kennea; Andrew J. Levan; Craig B. Markwardt; K. O. Mason; P. Meszaros; M. J. Page; David M. Palmer; E. Rol; Takanori Sakamoto; R. Willingale; Lorella Angelini; Andrew P. Beardmore; Patricia T. Boyd; Alice A. Breeveld; Sergio Campana; Margaret Chester; Guido Chincarini
Gamma-ray bursts (GRBs) come in two classes: long (> 2 s), soft-spectrum bursts and short, hard events. Most progress has been made on understanding the long GRBs, which are typically observed at high redshift (z ≈ 1) and found in subluminous star-forming host galaxies. They are likely to be produced in core-collapse explosions of massive stars. In contrast, no short GRB had been accurately (< 10″) and rapidly (minutes) located. Here we report the detection of the X-ray afterglow from—and the localization of—the short burst GRB 050509B. Its position on the sky is near a luminous, non-star-forming elliptical galaxy at a redshift of 0.225, which is the location one would expect if the origin of this GRB is through the merger of neutron-star or black-hole binaries. The X-ray afterglow was weak and faded below the detection limit within a few hours; no optical afterglow was detected to stringent limits, explaining the past difficulty in localizing short GRBs.
The Astrophysical Journal | 2004
Brian J. Barris; John L. Tonry; Stephane Blondin; Peter M. Challis; Ryan Chornock; Alejandro Clocchiatti; Alexei V. Filippenko; Peter Marcus Garnavich; Stephen T. Holland; Saurabh W. Jha; Robert P. Kirshner; Kevin Krisciunas; Bruno Leibundgut; Weidong Li; Thomas Matheson; Gajus A. Miknaitis; Adam G. Riess; Brian Paul Schmidt; R. Chris Smith; Jesper Sollerman; Jason Spyromilio; Christopher W. Stubbs; Nicholas B. Suntzeff; H. Aussel; K. C. Chambers; Michael S. Connelley; Dominic G. O’Donovan; J. Patrick Henry; Nick Kaiser; Michael C. Liu
We present photometric and spectroscopic observations of 23 high-redshift supernovae (SNe) spanning a range of z = 0.34-1.03, nine of which are unambiguously classified as Type Ia. These SNe were discovered during the IfA Deep Survey, which began in 2001 September and observed a total of 2.5 deg2 to a depth of approximately m ? 25-26 in RIZ over 9-17 visits, typically every 1-3 weeks for nearly 5 months, with additional observations continuing until 2002 April. We give a brief description of the survey motivations, observational strategy, and reduction process. This sample of 23 high-redshift SNe includes 15 at z ? 0.7, doubling the published number of objects at these redshifts, and indicates that the evidence for acceleration of the universe is not due to a systematic effect proportional to redshift. In combination with the recent compilation of Tonry et al. (2003), we calculate cosmological parameter density contours that are consistent with the flat universe indicated by the cosmic microwave background (Spergel et al. 2003). Adopting the constraint that ?total = 1.0, we obtain best-fit values of (?m,??) = (0.33, 0.67) using 22 SNe from this survey augmented by the literature compilation. We show that using the empty-beam model for gravitational lensing does not eliminate the need for ?? > 0. Experience from this survey indicates great potential for similar large-scale surveys while also revealing the limitations of performing surveys for z > 1 SNe from the ground.We present photometric and spectroscopic observations of 23 high redshift supernovae spanning a range of z=0.34-1.03, 9 of which are unambiguously classified as Type Ia. These supernovae were discovered during the IfA Deep Survey, which began in September 2001 and observed a total of 2.5 square degrees to a depth of approximately m=25-26 in RIZ over 9-17 visits, typically every 1-3 weeks for nearly 5 months, with additional observations continuing until April 2002. We give a brief description of the survey motivations, observational strategy, and reduction process. This sample of 23 high-redshift supernovae includes 15 at z>0.7, doubling the published number of objects at these redshifts, and indicates that the evidence for acceleration of the universe is not due to a systematic effect proportional to redshift. In combination with the recent compilation of Tonry et al. (2003), we calculate cosmological parameter density contours which are consistent with the flat universe indicated by the CMB (Spergel et al. 2003). Adopting the constraint that Omega_total = 1.0, we obtain best-fit values of (Omega_m, Omega_Lambda)=(0.33, 0.67) using 22 SNe from this survey augmented by the literature compilation. We show that using the empty-beam model for gravitational lensing does not eliminate the need for Omega_Lambda > 0. Experience from this survey indicates great potential for similar large-scale surveys while also revealing the limitations of performing surveys for z>1 SNe from the ground.
Nature | 2006
Johan Peter Uldall Fynbo; Darach Watson; C. C. Thöne; Jesper Sollerman; Joshua S. Bloom; Tamara M. Davis; Jens Hjorth; P. Jakobsson; U. G. Jørgensen; John F. Graham; Andrew S. Fruchter; D. F. Bersier; Lisa J. Kewley; Arnaud Cassan; José María Castro Cerón; S. Foley; Javier Gorosabel; Tobias Cornelius Hinse; K. Horne; B. L. Jensen; Sylvio Klose; Daniel Kocevski; Jean-Baptiste Marquette; Daniel A. Perley; Enrico Ramirez-Ruiz; Maximilian D. Stritzinger; Paul M. Vreeswijk; Ralph A. M. Wijers; Kristian Woller; Dong Xu
It is now accepted that long-duration γ-ray bursts (GRBs) are produced during the collapse of a massive star1,2. The standard ‘collapsar’ model3 predicts that a broad-lined and luminous type Ic core-collapse supernova accompanies every long-duration GRB4. This association has been confirmed in observations of several nearby GRBs5–9. Here we report that GRB 060505 (ref. 10) and GRB 060614 (ref. 11) were not accompanied by supernova emission down to limits hundreds of times fainter than the archetypal supernova SN 1998bw that accompanied GRB 980425, and fainter than any type Ic supernova ever observed12. Multi-band observations of the early afterglows, as well as spectroscopy of the host galaxies, exclude the possibility of significant dust obscuration and show that the bursts originated in actively star-forming regions. The absence of a supernova to such deep limits is qualitatively different from all previous nearby long-duration GRBs and suggests a new phenomenological type of massive stellar death.
The Astrophysical Journal | 2001
Ferdinando Patat; E. Cappellaro; J. Danziger; Paolo A. Mazzali; Jesper Sollerman; T. Augusteijn; James Brewer; V. Doublier; J.-F. Gonzalez; Olivier R. Hainaut; C. Lidman; Bruno Leibundgut; K. Nomoto; Takayoshi Nakamura; Jason Spyromilio; Luca Rizzi; Massimo Turatto; Jeremy R. Walsh; Titus J. Galama; Jan van Paradijs; C. Kouveliotou; Paul M. Vreeswijk; Filippo Frontera; Nicola Masetti; Eliana Palazzi; E. Pian
We present and discuss the photometric and spectroscopic evolution of the peculiar SN 1998bw, associated with GRB 980425, through an analysis of optical and near-IR data collected at ESOLa Silla. The spectroscopic data, spanning the period from day ( 9t o day)376 (relative to B maximum), have shown that this supernova (SN) was unprecedented, although somewhat similar to SN 1997ef. Maximum expansion velocities as high as 3 ) 104 km s~1 to some extent mask its resemblance to other Type Ic SNe. At intermediate phases, between photospheric and fully nebular, the expansion velocities (D104 km s~1) remained exceptionally high compared to those of other recorded core-collapse SNe at a similar phase. The mild linear polarization detected at early epochs suggests the presence of asymmetry in the emitting material. The degree of asymmetry, however, cannot be decoded from these measurements alone. The He I 1.083 and 2.058 km lines are identi—ed, and He is suggested to lie in an outer region of the envelope. The temporal behavior of the —uxes and pro—les of emission lines of Mg I) j4571, (O I) jj6300, 6364, and a feature ascribed to Fe are traced to stimulate future modeling work. The uniqueness of SN 1998bw became less obvious once it entered the fully nebular phase (after 1 yr), when it was very similar to other Type Ib/cIIb objects, such as the Type Ib SN 1996N and the Type IIb SN 1993J, even though SN 1998bw was 1.4 mag brighter than SN 1993J and 3 mag brighter than SN 1996N at a com- parable phase. The late-phase optical photometry, which extends up to 403 days after B maximum, shows that the SN luminosity declined exponentially but substantially faster than the decay rate of 56Co. The ultraviolet-optical-infrared bolometric light curve, constructed using all available optical data and the early JHK photometry presented in this work, shows a slight —attening starting on about day )300. Since no clear evidence of ejecta-wind interaction was found in the late-time spectroscopy (see also the work of Sollerman and coworkers), this may be due to the contribution of the positrons since most c-rays escape thermalization at this phase. A contribution from the superposed H II region cannot, however, be excluded. Subject headings: gamma rays: burstssupernovae: generalsupernovae: individual (SN 1998bw)