Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jesper V. Møller is active.

Publication


Featured researches published by Jesper V. Møller.


Biochimica et Biophysica Acta | 2000

Interaction of membrane proteins and lipids with solubilizing detergents

Marc le Maire; Philippe Champeil; Jesper V. Møller

Detergents are indispensable in the isolation of integral membrane proteins from biological membranes to study their intrinsic structural and functional properties. Solubilization involves a number of intermediary states that can be studied by a variety of physicochemical and kinetic methods; it usually starts by destabilization of the lipid component of the membranes, a process that is accompanied by a transition of detergent binding by the membrane from a noncooperative to a cooperative interaction already below the critical micellar concentration (CMC). This leads to the formation of membrane fragments of proteins and lipids with detergent-shielded edges. In the final stage of solubilization membrane proteins are present as protomers, with the membrane inserted sectors covered by detergent. We consider in detail the nature of this interaction and conclude that in general binding as a monolayer ring, rather than as a micelle, is the most probable mechanism. This mode of interaction is supported by neutron diffraction investigations on the disposition of detergent in 3-D crystals of membrane proteins. Finally, we briefly discuss the use of techniques such as analytical ultracentrifugation, size exclusion chromatography, and mass spectrometry relevant for the structural investigation of detergent solubilized membrane proteins.


Biophysical Journal | 1998

The Mechanism of Detergent Solubilization of Liposomes and Protein-Containing Membranes

Ulrich Kragh-Hansen; Marc le Maire; Jesper V. Møller

The present study explores intermediate stages in detergent solubilization of liposomes and Ca2+-ATPase membranes by sodium dodecyl sulfate (SDS) and medium-sized ( approximately C12) nonionic detergents. In all cases detergent partitioning in the membranes precedes cooperative binding and solubilization, which is facilitated by exposure to detergent micelles. Nonionic detergents predominantly interact with the lipid component of Ca2+-ATPase membranes below the CMC (critical micellar concentration), whereas SDS extracts Ca2+-ATPase before solubilization of lipid. At the transition to cooperative binding, n-dodecyl octaethylene glycol monoether (C12E8), Triton X-100, and dodecyldimethylamine oxide induce fusion of small unilamellar liposomes to larger vesicles before solubilization. Solubilization of Ca2+-ATPase membranes is accompanied by membrane fragmentation and aggregation rather than vesicle fusion. Detergents with strongly hydrophilic heads (SDS and beta-D-dodecylmaltoside) only very slowly solubilize liposomal membranes and do not cause liposome fusion. These properties are correlated with a slow bilayer flip-flop. Our data suggest that detergent solubilization proceeds by a combination of 1) a transbilayer attack, following flip-flop of detergent molecules across the lipid bilayer, and 2) extraction of membrane components directly by detergent micelles. The present study should help in the design of efficient solubilization protocols, accomplishing the often delicate balance between preserving functional properties of detergent sensitive membrane proteins and minimizing secondary aggregation and lipid content.


Quarterly Reviews of Biophysics | 2010

The sarcoplasmic Ca2+-ATPase: design of a perfect chemi-osmotic pump.

Jesper V. Møller; Claus Olesen; Anne-Marie Lund Winther; Poul Nissen

The sarcoplasmic (SERCA 1a) Ca2+-ATPase is a membrane protein abundantly present in skeletal muscles where it functions as an indispensable component of the excitation-contraction coupling, being at the expense of ATP hydrolysis involved in Ca2+/H+ exchange with a high thermodynamic efficiency across the sarcoplasmic reticulum membrane. The transporter serves as a prototype of a whole family of cation transporters, the P-type ATPases, which in addition to Ca2+ transporting proteins count Na+, K+-ATPase and H+, K+-, proton- and heavy metal transporting ATPases as prominent members. The ability in recent years to produce and analyze at atomic (2·3-3 Å) resolution 3D-crystals of Ca2+-transport intermediates of SERCA 1a has meant a breakthrough in our understanding of the structural aspects of the transport mechanism. We describe here the detailed construction of the ATPase in terms of one membraneous and three cytosolic domains held together by a central core that mediates coupling between Ca2+-transport and ATP hydrolysis. During turnover, the pump is present in two different conformational states, E1 and E2, with a preference for the binding of Ca2+ and H+, respectively. We discuss how phosphorylated and non-phosphorylated forms of these conformational states with cytosolic, occluded or luminally exposed cation-binding sites are able to convert the chemical energy derived from ATP hydrolysis into an electrochemical gradient of Ca2+ across the sarcoplasmic reticulum membrane. In conjunction with these basic reactions which serve as a structural framework for the transport function of other P-type ATPases as well, we also review the role of the lipid phase and the regulatory and thermodynamic aspects of the transport mechanism.


Biochemical and Biophysical Research Communications | 1981

Soluble and active renal Na, K-ATPase with maximum protein molecular mass 170,000 +/- 9,000 daltons; formation of larger units by secondary aggregation.

Jaakko Brotherus; Jesper V. Møller; Peter L. Jørgensen

Summary Purified membrane-bound Na,K-ATPase from pig kidney was solubilized with nonionic detergent, dodecyloctaethylenglycol monoether (C 12 E 8 ) as 70–90% active protein units with S 20,w 7.4 ± 0.2 and maximum molecular mass 170,000 ± 9,000 daltons indicating that the soluble complex predominantly consisted of protomeric αβ-units. Inactivation of Na,K-ATPase by excess C 12 E 8 was not related to the aggregation state of the protein. On storage both the soluble Na,K-ATPase and soluble Ca-ATPase (115,000 daltons) from sarcoplasmic reticulum underwent secondary aggregation which may account for previous reports of higher molecular weights.


Science Translational Medicine | 2012

Engineering a prostate-specific membrane antigen-activated tumor endothelial cell prodrug for cancer therapy

Samuel R. Denmeade; Annastasiah Mhaka; D. Marc Rosen; W. Nathaniel Brennen; Susan L. Dalrymple; Ingrid Dach; Claus Olesen; Bora Gurel; Angelo M. DeMarzo; George Wilding; Michael A. Carducci; Craig A. Dionne; Jesper V. Møller; Poul Nissen; S. Brøgger Christensen; John T. Isaacs

A prostate-specific membrane antigen–activated prodrug selectively kills cancer cells and is being tested in patients with advanced cancer. An Old Approach Is New Again In the 1995 film The Last Supper, a group of graduate students invite a diverse cast of characters for a series of Sunday dinners. After one guest threatens the lives of several of the students, subsequent dinners turn deadly. If the guest holds views that the group considers toxic to society, then the house wine is made poisonous and served only to the unwanted houseguest, who promptly dies. In a related scenario, Denmeade et al. use a prodrug to seek out and selectively poison unsavory guests that are toxic to the body—namely, cancer cells. The new work describes the development of a thapsigargin (TG) prodrug that is activated in the vasculature of solid tumors by tumor endothelial cells. The carboxypeptidase prostate-specific membrane antigen (PSMA)—which is selectively expressed on the surface of prostate cancer cells, including metastatic ones, and tumor, but not normal, endothelial cells—cleaves and activates the prodrug extracellularly in the tumor microenvironment. The activated cytotoxic moiety then poisons neighboring cancer cells within sites of metastases by entering the cells and inhibiting the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) pump, which is essential to the function of all normal and tumor cell types. The authors showed that treatment with the prodrug caused significant tumor regression in two mouse xenograft models of human prostate cancer and one model of human breast cancer with relatively little toxicity—less than that of the maximally tolerated dose of the widely used cancer drug docetaxel. Although the targeted prodrug concept is not new, the current approach has several features that make it superior to many previous ones. First, unlike most cytotoxic cancer drugs, TG is not cell cycle–dependent and thus can kill nondividing cancer cells. Furthermore, drug toxicity is expected to be low, because the PSMA substrate in the prodrug is cleaved primarily by prostate cancer cells and in the vicinity of tumor endothelial cells. In fact, the authors report that studies in cynomolgus monkeys showed minimal toxic effects except in the kidney, and even that renal toxicity was minimal to mild and reversible at the low drug dose. As with all cancer drugs, the new findings will require clinical validation in ongoing studies. However, this unusual therapeutic approach has the potential to be an effective and selective ouster of unwanted invaders that threaten their hosts. Heterogeneous expression of drug target proteins within tumor sites is a major mechanism of resistance to anticancer therapies. We describe a strategy to selectively inhibit, within tumor sites, the function of a critical intracellular protein, the sarcoplasmic/endoplasmic reticulum calcium adenosine triphosphatase (SERCA) pump, whose proper function is required by all cell types for viability. To achieve targeted inhibition, we took advantage of the unique expression of the carboxypeptidase prostate-specific membrane antigen (PSMA) by tumor endothelial cells within the microenvironment of solid tumors. We generated a prodrug, G202, consisting of a PSMA-specific peptide coupled to an analog of the potent SERCA pump inhibitor thapsigargin. G202 produced substantial tumor regression against a panel of human cancer xenografts in vivo at doses that were minimally toxic to the host. On the basis of these data, a phase 1 dose-escalation clinical trial has been initiated with G202 in patients with advanced cancer.


Nature | 2013

The sarcolipin-bound calcium pump stabilizes calcium sites exposed to the cytoplasm

Anne-Marie Lund Winther; Maike Bublitz; Jesper L. Karlsen; Jesper V. Møller; John Bondo Hansen; Poul Nissen; Morten J. Buch-Pedersen

The contraction and relaxation of muscle cells is controlled by the successive rise and fall of cytosolic Ca2+, initiated by the release of Ca2+ from the sarcoplasmic reticulum and terminated by re-sequestration of Ca2+ into the sarcoplasmic reticulum as the main mechanism of Ca2+ removal. Re-sequestration requires active transport and is catalysed by the sarcoplasmic reticulum Ca2+-ATPase (SERCA), which has a key role in defining the contractile properties of skeletal and heart muscle tissue. The activity of SERCA is regulated by two small, homologous membrane proteins called phospholamban (PLB, also known as PLN) and sarcolipin (SLN). Detailed structural information explaining this regulatory mechanism has been lacking, and the structural features defining the pathway through which cytoplasmic Ca2+ enters the intramembranous binding sites of SERCA have remained unknown. Here we report the crystal structure of rabbit SERCA1a (also known as ATP2A1) in complex with SLN at 3.1 Å resolution. The regulatory SLN traps the Ca2+-ATPase in a previously undescribed E1 state, with exposure of the Ca2+ sites through an open cytoplasmic pathway stabilized by Mg2+. The structure suggests a mechanism for selective Ca2+ loading and activation of SERCA, and provides new insight into how SLN and PLB inhibition arises from stabilization of this E1 intermediate state without bound Ca2+. These findings may prove useful in studying how autoinhibitory domains of other ion pumps modulate transport across biological membranes.


Analytical Biochemistry | 1986

The use of high-performance liquid chromatography for the determination of size and molecular weight of proteins: a caution and a list of membrane proteins suitable as standards

Marc le Maire; Lawrence P. Aggerbeck; Claude Monteilhet; Jens Peter Andersen; Jesper V. Møller

We propose a list of 15 water-soluble globular proteins and 13 forms of detergent-soluble membrane proteins of known Stokes radii for the calibration of high-performance liquid chromatography columns. It is shown that it is advisable to use different sets of standards for these two types of proteins as the detergent-solubilized membrane proteins may behave differently, being excluded or retarded, depending upon the gel support. A smooth, although nonlinear, relationship between Stokes radii and erf-1(1--KD) is observed while a large scatter of points exists if the calibration is expressed as the molecular weight as a function of KD.


Analytical Biochemistry | 1980

Use of gel chromatography for determination of size and molecular weight of proteins: Further caution

Marc le Maire; Emilio Rivas; Jesper V. Møller

Abstract The permeation properties of chromatographic gels with large pore sizes have been examined by the use of selected, water-soluble proteins. We observed that plots of Stokes radius vs erf−1 (1 − Kd) of Sepharose gels were nonlinear, probably reflecting the presence of two classes of pore sizes of the gel. This was also the case for Sephacryl S-300 columns, although to a lesser degree. An apparent anomaly in the elution of hemoglobin could be attributed to dissociation into dimer. The elution of detergent-solubilized membrane proteins on Sepharose columns was somewhat enhanced relative to the calibration curve. On the basis of these results the use and limitations of gel chromatography for estimation of Stokes radius and molecular weight of proteins is discussed.


Biophysical Journal | 2001

Detergents as Probes of Hydrophobic Binding Cavities in Serum Albumin and Other Water-Soluble Proteins

Ulrich Kragh-Hansen; Florence Hellec; Béatrice de Foresta; Marc le Maire; Jesper V. Møller

As an extension of our studies on the interaction of detergents with membranes and membrane proteins, we have investigated their binding to water-soluble proteins. Anionic aliphatic compounds (dodecanoate and dodecylsulfate) were bound to serum albumin with high affinity at nine sites; related nonionic detergents (C12E8 and dodecylmaltoside) were bound at seven to eight sites, many in common with those of dodecanoate. The compounds were also bound in the hydrophobic cavity of beta-lactoglobulin, but not to ovalbumin. In addition to the generally recognized role of the Sudlow binding region II of serum albumin (localized at the IIIA subdomain) in fatty acid binding, quenching of the fluorescence intensity of tryptophan-214 by 7,8-dibromododecylmaltoside and 12-bromododecanoate also implicate the Sudlow binding region I (subdomain IIA) as a locus for binding of aliphatic compounds. Our data document the usefulness of dodecyl amphipathic compounds as probes of hydrophobic cavities in water-soluble proteins. In conjunction with recent x-ray diffraction analyses of fatty acid binding as the starting point we propose a new symmetrical binding model for the location of nine high-affinity sites on serum albumin for aliphatic compounds.


Molecular and Cellular Biochemistry | 1981

The sarcoplasmic reticulum Ca2+-ATPase

Jesper V. Møller; Jens Peter Andersen; M. le Maire

SummaryThis review summarizes studies on the structural organization of Ca2+-ATPase in the sarcoplasmic reticulum membrane in relation to the function of the transport protein. Recent advances in this field have been made by a combination of protein-chemical, ultrastructural, and physicochemical techniques on membraneous and detergent solubilized ATPase. A particular feature of the ATPase (Part I) is the presence of a hydrophilic ‘head’, facing the cytoplasm, and a ‘tail’ inserted in the membrane. In agreement with this view the protein is moderately hydrophobic, compared to many other integral membrane proteins, and the number of traverses of the 115 000 Dalton peptide chain through the lipid may be limited to 3–4.There is increasing evidence (Part II) that the ATPase is self-associated in the membrane in oligomeric form. This appears to be a common feature of many transport proteins. Each ATPase peptide seems to be able to perform the whole catalytic cycle of ATP hydrolysis and Ca2+ transport. Protein-protein interactions seem to have a modulatory effect on enzyme activity and to stabilize the enzyme against inactivation.Phospholipids (Part III) are not essential for the expression of enzyme activity which only requires the presence of flexible hydrocarbon chains that can be provided e.g. by polyoxyethylene glycol detergents. Perturbation of the lipid bilayer by the insertion of membrane protein leads to some immobilization of the lipid hydrocarbon chains, but not to the extent envisaged by the annulus hypothesis. Strong immobilization, whenever it occurs, may arise from steric hindrance due to protein-protein contacts. Recent studies suggest that breaks in Arrhenius plots of enzyme activity primarily reflect intrinsic properties of the protein rather than changes in the character of lipid motion as a function of temperature.

Collaboration


Dive into the Jesper V. Møller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Champeil

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge