Jesse David Thomas
Sandia National Laboratories
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jesse David Thomas.
Archive | 2018
Jesse David Thomas
Sierra/SolidMechanics (Sierra/SM) is a Lagrangian, three-dimensional code for the analysis of solids and structures. It provides capabilities for explicit dynamic and implicit quasistatic and dynamic analyses. The explicit dynamics capabilities allow for the efficient and robust solution of models subjected to large, suddenly applied loads. For implicit problems, Sierra/SM uses a multi-level iterative solver, which enables it to effectively solve problems with large deformations, nonlinear material behavior, and contact. Sierra/SM has a versatile library of continuum and structural elements, and an extensive library of material models. The code is written for parallel computing environments, and it allows for scalable solutions of very large problems for both implicit and explicit analyses. It is built on the SIERRA Framework, which allows for coupling with other SIERRA mechanics codes. This document describes the functionality and input structure for Sierra/SM.
Archive | 2011
Benjamin Spencer; Nathan K. Crane; Martin W. Heinstein; Alex J. Lindblad; David John Littlewood; Kendall H. Pierson; Vicki L. Porter; Nathaniel S. Roehrig; Timothy Shelton; Gregory D. Sjaardema; Jesse David Thomas; Michael Veilleux
Adagio is a Lagrangian, three-dimensional, implicit code for the analysis of solids and structures. It uses a multi-level iterative solver, which enables it to solve problems with large deformations, nonlinear material behavior, and contact. It also has a versatile library of continuum and structural elements, and an extensive library of material models. Adagio is written for parallel computing environments, and its solvers allow for scalable solutions of very large problems. Adagio uses the SIERRA Framework, which allows for coupling with other SIERRA mechanics codes. This document describes the functionality and input structure for Adagio.
ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels | 2012
Samuel R. Subia; J. Frank Dempsey; Nathan K. Crane; Jesse David Thomas
Finite element method (FEM) numerical simulations of heat transfer for high-temperature regimes often require modeling of grey-body enclosure radiation where enclosure geometry definitions are obtained as part of the model grid generation process. Owing to the expense of solving the radiation problem, typical FEM approaches loosely couple the radiative transfer solution as boundary conditions to a standard conduction formulation. When the problem at hand is thermal-mechanical and relative motion occurs between enclosure surfaces, the simulation code is tasked with providing a means of updating the original enclosure surface geometry to reflect the deformed configuration. While this scenario is manageable for contiguously meshed discretizations, the difficulty of updating enclosure geometry is greatly increased when the model admits sliding. Here the analysis code must employ both mechanical and thermal contact, relying heavily on geometric search and contact constraints to enforce closure for the conduction formulation.General purpose large-deformation FEM structural codes employ surface contact utilities to provide geometric search and contact constraint definitions. This paper describes an ongoing effort to leverage contact utilities for solving the enclosure radiation problem in deforming and sliding mesh scenarios while having minimal impact to a traditional modeling approach. The current effort is divided into two areas, enclosure definitions and thermal contact, but the primary focus here is on enabling use of contact to provide definition of the enclosure. The proposed methodology is demonstrated on simple enclosure radiation models using SNL Sierra Mechanics Dash contact utilities and the Chaparral enclosure radiation library with Sierra Mechanics Structural and Thermal application codes.Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security Administration under contract DE-AC04-94AL85000.Copyright
Archive | 2013
David John Littlewood; Jesse David Thomas; Timothy Shelton
Archive | 2018
Julia A. Plews; Nathan K. Crane; Gabriel Jose de Frias; San Le; David John Littlewood; Mark Thomas Merewether; Matthew David Mosby; Kendall H. Pierson; Vicki L. Porter; Timothy Shelton; Jesse David Thomas; Michael R. Tupek; Michael Veilleux; Patrick G. Xavier
Archive | 2018
Julia A. Plews; Nathan K. Crane; Gabriel Jose de Frias; San Le; David John Littlewood; Mark Thomas Merewether; Matthew David Mosby; Kendall H. Pierson; Vicki L. Porter; Timothy Shelton; Jesse David Thomas; Michael R. Tupek; Michael Veilleux; Patrick G. Xavier
Archive | 2018
Julia A. Plews; Nathan K. Crane; Gabriel Jose de Frias; San Le; David John Littlewood; Mark Thomas Merewether; Matthew David Mosby; Kendall H. Pierson; Vicki L. Porter; Timothy Shelton; Jesse David Thomas; Michael R. Tupek; Michael Veilleux; Patrick G. Xavier
Archive | 2018
Julia A. Plews; Nathan K. Crane; Gabriel Jose de Frias; San Le; David John Littlewood; Mark Thomas Merewether; Matthew David Mosby; Kendall H. Pierson; Vicki L. Porter; Timothy Shelton; Jesse David Thomas; Michael R. Tupek; Michael Veilleux
Archive | 2018
Julia A. Plews; Nathan K. Crane; Gabriel Jose de Frias; San Le; David John Littlewood; Mark Thomas Merewether; Matthew David Mosby; Kendall H. Pierson; Vicki L. Porter; Timothy Shelton; Jesse David Thomas; Michael R. Tupek; Michael Veilleux; Patrick G. Xavier
Archive | 2018
Julia A. Plews; Nathan K. Crane; Gabriel Jose de Frias; San Le; David John Littlewood; Mark Thomas Merewether; Matthew David Mosby; Kendall H. Pierson; Vicki L. Porter; Timothy Shelton; Jesse David Thomas; Michael R. Tupek; Michael Veilleux; Patrick G. Xavier