Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jesse Davis is active.

Publication


Featured researches published by Jesse Davis.


international conference on machine learning | 2006

The relationship between Precision-Recall and ROC curves

Jesse Davis; Mark Goadrich

Receiver Operator Characteristic (ROC) curves are commonly used to present results for binary decision problems in machine learning. However, when dealing with highly skewed datasets, Precision-Recall (PR) curves give a more informative picture of an algorithms performance. We show that a deep connection exists between ROC space and PR space, such that a curve dominates in ROC space if and only if it dominates in PR space. A corollary is the notion of an achievable PR curve, which has properties much like the convex hull in ROC space; we show an efficient algorithm for computing this curve. Finally, we also note differences in the two types of curves are significant for algorithm design. For example, in PR space it is incorrect to linearly interpolate between points. Furthermore, algorithms that optimize the area under the ROC curve are not guaranteed to optimize the area under the PR curve.


international conference on machine learning | 2009

Deep transfer via second-order Markov logic

Jesse Davis; Pedro M. Domingos

Standard inductive learning requires that training and test instances come from the same distribution. Transfer learning seeks to remove this restriction. In shallow transfer, test instances are from the same domain, but have a different distribution. In deep transfer, test instances are from a different domain entirely (i.e., described by different predicates). Humans routinely perform deep transfer, but few learning systems, if any, are capable of it. In this paper we propose an approach based on a form of second-order Markov logic. Our algorithm discovers structural regularities in the source domain in the form of Markov logic formulas with predicate variables, and instantiates these formulas with predicates from the target domain. Using this approach, we have successfully transferred learned knowledge among molecular biology, social network and Web domains. The discovered patterns include broadly useful properties of predicates, like symmetry and transitivity, and relations among predicates, such as various forms of homophily.


international joint conference on artificial intelligence | 2011

Lifted probabilistic inference by first-order knowledge compilation

Guy Van den Broeck; Nima Taghipour; Wannes Meert; Jesse Davis; Luc De Raedt

Probabilistic logical languages provide powerful formalisms for knowledge representation and learning. Yet performing inference in these languages is extremely costly, especially if it is done at the propositional level. Lifted inference algorithms, which avoid repeated computation by treating indistinguishable groups of objects as one, help mitigate this cost. Seeking inspiration from logical inference, where lifted inference (e.g., resolution) is commonly performed, we develop a model theoretic approach to probabilistic lifted inference. Our algorithm compiles a first-order probabilistic theory into a first-order deterministic decomposable negation normal form (d-DNNF) circuit. Compilation offers the advantage that inference is polynomial in the size of the circuit. Furthermore, by borrowing techniques from the knowledge compilation literature our algorithm effectively exploits the logical structure (e.g., context-specific independencies) within the first-order model, which allows more computation to be done at the lifted level. An empirical comparison demonstrates the utility of the proposed approach.


Radiology | 2009

Probabilistic Computer Model Developed from Clinical Data in National Mammography Database Format to Classify Mammographic Findings

Elizabeth S. Burnside; Jesse Davis; Jagpreet Chhatwal; Oguzhan Alagoz; Mary J. Lindstrom; Berta M. Geller; Benjamin Littenberg; Katherine A. Shaffer; Charles E. Kahn; C. David Page

PURPOSE To determine whether a Bayesian network trained on a large database of patient demographic risk factors and radiologist-observed findings from consecutive clinical mammography examinations can exceed radiologist performance in the classification of mammographic findings as benign or malignant. MATERIALS AND METHODS The institutional review board exempted this HIPAA-compliant retrospective study from requiring informed consent. Structured reports from 48 744 consecutive pooled screening and diagnostic mammography examinations in 18 269 patients from April 5, 1999 to February 9, 2004 were collected. Mammographic findings were matched with a state cancer registry, which served as the reference standard. By using 10-fold cross validation, the Bayesian network was tested and trained to estimate breast cancer risk by using demographic risk factors (age, family and personal history of breast cancer, and use of hormone replacement therapy) and mammographic findings recorded in the Breast Imaging Reporting and Data System lexicon. The performance of radiologists compared with the Bayesian network was evaluated by using area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. RESULTS The Bayesian network significantly exceeded the performance of interpreting radiologists in terms of AUC (0.960 vs 0.939, P = .002), sensitivity (90.0% vs 85.3%, P < .001), and specificity (93.0% vs 88.1%, P < .001). CONCLUSION On the basis of prospectively collected variables, the evaluated Bayesian network can predict the probability of breast cancer and exceed interpreting radiologist performance. Bayesian networks may help radiologists improve mammographic interpretation.


european conference on machine learning | 2005

An integrated approach to learning bayesian networks of rules

Jesse Davis; Elizabeth S. Burnside; Inês de Castro Dutra; David C. Page; Vítor Santos Costa

Inductive Logic Programming (ILP) is a popular approach for learning rules for classification tasks. An important question is how to combine the individual rules to obtain a useful classifier. In some instances, converting each learned rule into a binary feature for a Bayes net learner improves the accuracy compared to the standard decision list approach [3,4,14]. This results in a two-step process, where rules are generated in the first phase, and the classifier is learned in the second phase. We propose an algorithm that interleaves the two steps, by incrementally building a Bayes net during rule learning. Each candidate rule is introduced into the network, and scored by whether it improves the performance of the classifier. We call the algorithm SAYU for Score As You Use. We evaluate two structure learning algorithms Naive Bayes and Tree Augmented Naive Bayes. We test SAYU on four different datasets and see a significant improvement in two out of the four applications. Furthermore, the theories that SAYU learns tend to consist of far fewer rules than the theories in the two-step approach.


international conference on data mining | 2010

Learning Markov Network Structure with Decision Trees

Daniel Lowd; Jesse Davis

Traditional Markov network structure learning algorithms perform a search for globally useful features. However, these algorithms are often slow and prone to finding local optima due to the large space of possible structures. Ravikumar et al. recently proposed the alternative idea of applying L1 logistic regression to learn a set of pair wise features for each variable, which are then combined into a global model. This paper presents the DTSL algorithm, which uses probabilistic decision trees as the local model. Our approach has two significant advantages: it is more efficient, and it is able to discover features that capture more complex interactions among the variables. Our approach can also be seen as a method for converting a dependency network into a consistent probabilistic model. In an extensive empirical evaluation on 13 datasets, our algorithm obtains comparable accuracy to three standard structure learning algorithms while running 1-4 orders of magnitude faster.


Nucleic Acids Research | 2016

Beegle: from literature mining to disease-gene discovery

Sarah Elshal; Léon-Charles Tranchevent; Alejandro Sifrim; Amin Ardeshirdavani; Jesse Davis; Yves Moreau

Disease-gene identification is a challenging process that has multiple applications within functional genomics and personalized medicine. Typically, this process involves both finding genes known to be associated with the disease (through literature search) and carrying out preliminary experiments or screens (e.g. linkage or association studies, copy number analyses, expression profiling) to determine a set of promising candidates for experimental validation. This requires extensive time and monetary resources. We describe Beegle, an online search and discovery engine that attempts to simplify this process by automating the typical approaches. It starts by mining the literature to quickly extract a set of genes known to be linked with a given query, then it integrates the learning methodology of Endeavour (a gene prioritization tool) to train a genomic model and rank a set of candidate genes to generate novel hypotheses. In a realistic evaluation setup, Beegle has an average recall of 84% in the top 100 returned genes as a search engine, which improves the discovery engine by 12.6% in the top 5% prioritized genes. Beegle is publicly available at http://beegle.esat.kuleuven.be/.


Machine Learning | 2015

Learning relational dependency networks in hybrid domains

Irma Ravkic; Jan Ramon; Jesse Davis

Statistical relational learning (SRL) is concerned with developing formalisms for representing and learning from data that exhibit both uncertainty and complex, relational structure. Most of the work in SRL has focused on modeling and learning from data that only contain discrete variables. As many important problems are characterized by the presence of both continuous and discrete variables, there has been a growing interest in developing hybrid SRL formalisms. Most of these formalisms focus on reasoning and representational issues and, in some cases, parameter learning. What has received little attention is learning the structure of a hybrid SRL model from data. In this paper, we fill that gap and make the following contributions. First, we propose hybrid relational dependency networks (HRDNs), an extension to relational dependency networks that are able to model continuous variables. Second, we propose an algorithm for learning both the structure and parameters of an HRDN from data. Third, we provide an empirical evaluation that demonstrates that explicitly modeling continuous variables results in more accurate learned models than discretizing them prior to learning.


inductive logic programming | 2013

Generalized Counting for Lifted Variable Elimination

Nima Taghipour; Jesse Davis; Hendrik Blockeel

Lifted probabilistic inference methods exploit symmetries in the structure of probabilistic models to perform inference more efficiently. In lifted variable elimination, the symmetry among a group of interchangeable random variables is captured by counting formulas, and exploited by operations that handle such formulas. In this paper, we generalize the structure of counting formulas and present a set of inference operators that introduce and eliminate these formulas from the model. This generalization expands the range of problems that can be solved in a lifted way. Our work is closely related to the recently introduced method of joint conversion. Due to its more fine grained formulation, however, our approach can provide more efficient solutions than joint conversion.


Machine Learning | 2016

Lifted generative learning of Markov logic networks

Jan Van Haaren; Guy Van den Broeck; Wannes Meert; Jesse Davis

Markov logic networks (MLNs) are a well-known statistical relational learning formalism that combines Markov networks with first-order logic. MLNs attach weights to formulas in first-order logic. Learning MLNs from data is a challenging task as it requires searching through the huge space of possible theories. Additionally, evaluating a theory’s likelihood requires learning the weight of all formulas in the theory. This in turn requires performing probabilistic inference, which, in general, is intractable in MLNs. Lifted inference speeds up probabilistic inference by exploiting symmetries in a model. We explore how to use lifted inference when learning MLNs. Specifically, we investigate generative learning where the goal is to maximize the likelihood of the model given the data. First, we provide a generic algorithm for learning maximum likelihood weights that works with any exact lifted inference approach. In contrast, most existing approaches optimize approximate measures such as the pseudo-likelihood. Second, we provide a concrete parameter learning algorithm based on first-order knowledge compilation. Third, we propose a structure learning algorithm that learns liftable MLNs, which is the first MLN structure learning algorithm that exactly optimizes the likelihood of the model. Finally, we perform an empirical evaluation on three real-world datasets. Our parameter learning algorithm results in more accurate models than several competing approximate approaches. It learns more accurate models in terms of test-set log-likelihood as well as prediction tasks. Furthermore, our tractable learner outperforms intractable models on prediction tasks suggesting that liftable models are a powerful hypothesis space, which may be sufficient for many standard learning problems.

Collaboration


Dive into the Jesse Davis's collaboration.

Top Co-Authors

Avatar

Jan Van Haaren

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David C. Page

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Nima Taghipour

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Hendrik Blockeel

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Wannes Meert

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Yves Moreau

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Daan Fierens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Sarah Elshal

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge