Jesse H. Krijthe
Delft University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jesse H. Krijthe.
intelligent data analysis | 2015
Jesse H. Krijthe; Marco Loog
We introduce a novel semi-supervised version of the least squares classifier. This implicitly constrained least squares (ICLS) classifier minimizes the squared loss on the labeled data among the set of parameters implied by all possible labelings of the unlabeled data. Unlike other discriminative semi-supervised methods, our approach does not introduce explicit additional assumptions into the objective function, but leverages implicit assumptions already present in the choice of the supervised least squares classifier. We show this approach can be formulated as a quadratic programming problem and its solution can be found using a simple gradient descent procedure. We prove that, in a certain way, our method never leads to performance worse than the supervised classifier. Experimental results corroborate this theoretical result in the multidimensional case on benchmark datasets, also in terms of the error rate.
international conference on pattern recognition | 2014
Jesse H. Krijthe; Marco Loog
Semi-supervised learning is an important and active topic of research in pattern recognition. For classification using linear discriminant analysis specifically, several semi-supervised variants have been proposed. Using any one of these methods is not guaranteed to outperform the supervised classifier which does not take the additional unlabeled data into account. In this work we compare traditional Expectation Maximization type approaches for semi-supervised linear discriminant analysis with approaches based on intrinsic constraints and propose a new principled approach for semi-supervised linear discriminant analysis, using so-called implicit constraints. We explore the relationships between these methods and consider the question if and in what sense we can expect improvement in performance over the supervised procedure. The constraint based approaches are more robust to misspecification of the model, and may outperform alternatives that make more assumptions on the data in terms of the log-likelihood of unseen objects.
Pattern Recognition | 2017
Jesse H. Krijthe; Marco Loog
Abstract We introduce the implicitly constrained least squares (ICLS) classifier, a novel semi-supervised version of the least squares classifier. This classifier minimizes the squared loss on the labeled data among the set of parameters implied by all possible labelings of the unlabeled data. Unlike other discriminative semi-supervised methods, this approach does not introduce explicit additional assumptions into the objective function, but leverages implicit assumptions already present in the choice of the supervised least squares classifier. This method can be formulated as a quadratic programming problem and its solution can be found using a simple gradient descent procedure. We prove that, in a limited 1-dimensional setting, this approach never leads to performance worse than the supervised classifier. Experimental results show that also in the general multidimensional case performance improvements can be expected, both in terms of the squared loss that is intrinsic to the classifier and in terms of the expected classification error.
international conference on pattern recognition | 2016
Jesse H. Krijthe; Marco Loog
The goal of semi-supervised learning is to improve supervised classifiers by using additional unlabeled training examples. In this work we study a simple self-learning approach to semi-supervised learning applied to the least squares classifier. We show that a soft-label and a hard-label variant of self-learning can be derived by applying block coordinate descent to two related but slightly different objective functions. The resulting soft-label approach is related to an idea about dealing with missing data that dates back to the 1930s. We show that the soft-label variant typically outperforms the hard-label variant on benchmark datasets and partially explain this behaviour by studying the relative difficulty of finding good local minima for the corresponding objective functions.
arXiv: Machine Learning | 2016
Jesse H. Krijthe
In this paper, we introduce a package for semi-supervised learning research in the R programming language called RSSL. We cover the purpose of the package, the methods it includes and comment on their use and implementation. We then show, using several code examples, how the package can be used to replicate well-known results from the semi-supervised learning literature.
arXiv: Machine Learning | 2016
Jesse H. Krijthe; Marco Loog
In this paper, we discuss the approaches we took and trade-offs involved in making a paper on a conceptual topic in pattern recognition research fully reproducible. We discuss our definition of reproducibility, the tools used, how the analysis was set up, show some examples of alternative analyses the code enables and discuss our views on reproducibility.
arXiv: Machine Learning | 2016
Jesse H. Krijthe; Marco Loog
For the supervised least squares classifier, when the number of training objects is smaller than the dimensionality of the data, adding more data to the training set may first increase the error rate before decreasing it. This, possibly counterintuitive, phenomenon is known as peaking. In this work, we observe that a similar but more pronounced version of this phenomenon also occurs in the semi-supervised setting, where instead of labeled objects, unlabeled objects are added to the training set. We explain why the learning curve has a more steep incline and a more gradual decline in this setting through simulation studies and by applying an approximation of the learning curve based on the work by Raudys and Duin.
international conference on pattern recognition | 2012
Jesse H. Krijthe; Tin Kam Ho; Marco Loog
Archive | 2017
Marco Loog; Jesse H. Krijthe; Are Charles Jensen
Archive | 2016
Marco Loog; Jesse H. Krijthe; Are Charles Jensen