Jesse M. Gray
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jesse M. Gray.
Nature | 2010
Tae Kyung Kim; Martin Hemberg; Jesse M. Gray; Allen M. Costa; Daniel M. Bear; Jing Wu; David A. Harmin; Mike Laptewicz; Kellie Barbara-Haley; Scott Kuersten; Eirene Markenscoff-Papadimitriou; Dietmar Kuhl; Haruhiko Bito; Paul F. Worley; Gabriel Kreiman; Michael E. Greenberg
We used genome-wide sequencing methods to study stimulus-dependent enhancer function in mouse cortical neurons. We identified ∼12,000 neuronal activity-regulated enhancers that are bound by the general transcriptional co-activator CBP in an activity-dependent manner. A function of CBP at enhancers may be to recruit RNA polymerase II (RNAPII), as we also observed activity-regulated RNAPII binding to thousands of enhancers. Notably, RNAPII at enhancers transcribes bi-directionally a novel class of enhancer RNAs (eRNAs) within enhancer domains defined by the presence of histone H3 monomethylated at lysine 4. The level of eRNA expression at neuronal enhancers positively correlates with the level of messenger RNA synthesis at nearby genes, suggesting that eRNA synthesis occurs specifically at enhancers that are actively engaged in promoting mRNA synthesis. These findings reveal that a widespread mechanism of enhancer activation involves RNAPII binding and eRNA synthesis.
Nature | 2007
Sreekanth H. Chalasani; Nikos Chronis; Makoto Tsunozaki; Jesse M. Gray; Daniel Ramot; Miriam B. Goodman; Cornelia I. Bargmann
Although many properties of the nervous system are shared among animals and systems, it is not known whether different neuronal circuits use common strategies to guide behaviour. Here we characterize information processing by Caenorhabditis elegans olfactory neurons (AWC) and interneurons (AIB and AIY) that control food- and odour-evoked behaviours. Using calcium imaging and mutations that affect specific neuronal connections, we show that AWC neurons are activated by odour removal and activate the AIB interneurons through AMPA-type glutamate receptors. The level of calcium in AIB interneurons is elevated for several minutes after odour removal, a neuronal correlate to the prolonged behavioural response to odour withdrawal. The AWC neuron inhibits AIY interneurons through glutamate-gated chloride channels; odour presentation relieves this inhibition and results in activation of AIY interneurons. The opposite regulation of AIY and AIB interneurons generates a coordinated behavioural response. Information processing by this circuit resembles information flow from vertebrate photoreceptors to ‘OFF’ bipolar and ‘ON’ bipolar neurons, indicating a conserved or convergent strategy for sensory information processing.
Neuron | 2008
Steven W. Flavell; Tae Kyung Kim; Jesse M. Gray; David A. Harmin; Martin Hemberg; Elizabeth J. Hong; Eirene Markenscoff-Papadimitriou; Daniel M. Bear; Michael E. Greenberg
Although many transcription factors are known to control important aspects of neural development, the genome-wide programs that are directly regulated by these factors are not known. We have characterized the genetic program that is activated by MEF2, a key regulator of activity-dependent synapse development. These MEF2 target genes have diverse functions at synapses, revealing a broad role for MEF2 in synapse development. Several of the MEF2 targets are mutated in human neurological disorders including epilepsy and autism spectrum disorders, suggesting that these disorders may be caused by disruption of an activity-dependent gene program that controls synapse development. Our analyses also reveal that neuronal activity promotes alternative polyadenylation site usage at many of the MEF2 target genes, leading to the production of truncated mRNAs that may have different functions than their full-length counterparts. Taken together, these analyses suggest that the ubiquitously expressed transcription factor MEF2 regulates an intricate transcriptional program in neurons that controls synapse development.
Neuron | 2009
Manuel Zimmer; Jesse M. Gray; Navin Pokala; Andrew Chang; David S. Karow; Michael A. Marletta; Martin L. Hudson; David B. Morton; Nikos Chronis; Cornelia I. Bargmann
Homeostatic sensory systems detect small deviations in temperature, water balance, pH, and energy needs to regulate adaptive behavior and physiology. In C. elegans, a homeostatic preference for intermediate oxygen (O2) levels requires cGMP signaling through soluble guanylate cyclases (sGCs), proteins that bind gases through an associated heme group. Here we use behavioral analysis, functional imaging, and genetics to show that reciprocal changes in O2 levels are encoded by sensory neurons that express alternative sets of sGCs. URX sensory neurons are activated by increases in O2 levels, and require the sGCs gcy-35 and gcy-36. BAG sensory neurons are activated by decreases in O2 levels, and require the sGCs gcy-31 and gcy-33. The sGCs are instructive O2 sensors, as forced expression of URX sGC genes causes BAG neurons to detect O2 increases. Both sGC expression and cell-intrinsic dynamics contribute to the differential roles of URX and BAG in O2-dependent behaviors.
Nature | 2015
Praneeth Namburi; Anna Beyeler; Suzuko Yorozu; Gwendolyn G. Calhoon; Sarah A. Halbert; Romy Wichmann; Stephanie S. Holden; Kim L. Mertens; Melodi N. Anahtar; Ada C. Felix-Ortiz; Ian R. Wickersham; Jesse M. Gray; Kay M. Tye
The ability to differentiate stimuli predicting positive or negative outcomes is critical for survival, and perturbations of emotional processing underlie many psychiatric disease states. Synaptic plasticity in the basolateral amygdala complex (BLA) mediates the acquisition of associative memories, both positive and negative. Different populations of BLA neurons may encode fearful or rewarding associations, but the identifying features of these populations and the synaptic mechanisms of differentiating positive and negative emotional valence have remained unknown. Here we show that BLA neurons projecting to the nucleus accumbens (NAc projectors) or the centromedial amygdala (CeM projectors) undergo opposing synaptic changes following fear or reward conditioning. We find that photostimulation of NAc projectors supports positive reinforcement while photostimulation of CeM projectors mediates negative reinforcement. Photoinhibition of CeM projectors impairs fear conditioning and enhances reward conditioning. We characterize these functionally distinct neuronal populations by comparing their electrophysiological, morphological and genetic features. Overall, we provide a mechanistic explanation for the representation of positive and negative associations within the amygdala.
Developmental Cell | 2016
Daniel M. DeLaughter; Alexander G. Bick; Hiroko Wakimoto; David M. McKean; Joshua M. Gorham; Irfan S. Kathiriya; John T. Hinson; Jason Homsy; Jesse M. Gray; William T. Pu; Benoit G. Bruneau; Jonathan G. Seidman; Christine E. Seidman
Activation of complex molecular programs in specific cell lineages governs mammalian heart development, from a primordial linear tube to a four-chamber organ. To characterize lineage-specific, spatiotemporal developmental programs, we performed single-cell RNA sequencing of >1,200 murine cells isolated at seven time points spanning embryonic day 9.5 (primordial heart tube) to postnatal day 21 (mature heart). Using unbiased transcriptional data, we classified cardiomyocytes, endothelial cells, and fibroblast-enriched cells, thus identifying markers for temporal and chamber-specific developmental programs. By harnessing these datasets, we defined developmental ages of human and mouse pluripotent stem-cell-derived cardiomyocytes and characterized lineage-specific maturation defects in hearts of mice with heterozygous mutations in Nkx2.5 that cause human heart malformations. This spatiotemporal transcriptome analysis of heart development reveals lineage-specific gene programs underlying normal cardiac development and congenital heart disease.
PLOS ONE | 2014
Jesse M. Gray; David A. Harmin; Sarah A. Boswell; Nicole Cloonan; Thomas E. Mullen; Joseph J. Ling; Nimrod Miller; Scott Kuersten; Yong Chao Ma; Steven A. McCarroll; Sean M. Grimmond; Michael Springer
mRNA synthesis, processing, and destruction involve a complex series of molecular steps that are incompletely understood. Because the RNA intermediates in each of these steps have finite lifetimes, extensive mechanistic and dynamical information is encoded in total cellular RNA. Here we report the development of SnapShot-Seq, a set of computational methods that allow the determination of in vivo rates of pre-mRNA synthesis, splicing, intron degradation, and mRNA decay from a single RNA-Seq snapshot of total cellular RNA. SnapShot-Seq can detect in vivo changes in the rates of specific steps of splicing, and it provides genome-wide estimates of pre-mRNA synthesis rates comparable to those obtained via labeling of newly synthesized RNA. We used SnapShot-Seq to investigate the origins of the intrinsic bimodality of metazoan gene expression levels, and our results suggest that this bimodality is partly due to spillover of transcriptional activation from highly expressed genes to their poorly expressed neighbors. SnapShot-Seq dramatically expands the information obtainable from a standard RNA-Seq experiment.
Cold Spring Harbor Perspectives in Biology | 2015
Tae Kyung Kim; Martin Hemberg; Jesse M. Gray
Recent studies have revealed that active enhancers are transcribed, producing a class of noncoding RNAs called enhancer RNAs (eRNAs). eRNAs are distinct from long noncoding RNAs (lncRNAs), but these two species of noncoding RNAs may share a similar role in the activation of mRNA transcription. Emerging studies, showing that eRNAs function in controlling mRNA transcription, challenge the idea that enhancers are merely sites of transcription factor assembly. Instead, communication between promoters and enhancers can be bidirectional with promoters required to activate enhancer transcription. Reciprocally, eRNAs may then facilitate enhancer-promoter interaction or activate promoter-driven transcription.
Genome Research | 2016
Thomas A. Nguyen; Richard D. Jones; Andrew Snavely; Andreas R. Pfenning; Rory Kirchner; Martin Hemberg; Jesse M. Gray
Promoters initiate RNA synthesis, and enhancers stimulate promoter activity. Whether promoter and enhancer activities are encoded distinctly in DNA sequences is unknown. We measured the enhancer and promoter activities of thousands of DNA fragments transduced into mouse neurons. We focused on genomic loci bound by the neuronal activity-regulated coactivator CREBBP, and we measured enhancer and promoter activities both before and after neuronal activation. We find that the same sequences typically encode both enhancer and promoter activities. However, gene promoters generate more promoter activity than distal enhancers, despite generating similar enhancer activity. Surprisingly, the greater promoter activity of gene promoters is not due to conventional core promoter elements or splicing signals. Instead, we find that particular transcription factor binding motifs are intrinsically biased toward the generation of promoter activity, whereas others are not. Although the specific biases we observe may be dependent on experimental or cellular context, our results suggest that gene promoters are distinguished from distal enhancers by specific complements of transcriptional activators.
BMC Genomics | 2011
Michele A. Busby; Jesse M. Gray; Allen M. Costa; Chip Stewart; Michael Stromberg; Derek Barnett; Jeffrey H. Chuang; Michael Springer; Gabor T. Marth
BackgroundThe evolution of gene expression is a challenging problem in evolutionary biology, for which accurate, well-calibrated measurements and methods are crucial.ResultsWe quantified gene expression with whole-transcriptome sequencing in four diploid, prototrophic strains of Saccharomyces species grown under the same condition to investigate the evolution of gene expression. We found that variation in expression is gene-dependent with large variations in each genes expression between replicates of the same species. This confounds the identification of genes differentially expressed across species. To address this, we developed a statistical approach to establish significance bounds for inter-species differential expression in RNA-Seq data based on the variance measured across biological replicates. This metric estimates the combined effects of technical and environmental variance, as well as Poisson sampling noise by isolating each component. Despite a paucity of large expression changes, we found a strong correlation between the variance of gene expression change and species divergence (R2 = 0.90).ConclusionWe provide an improved methodology for measuring gene expression changes in evolutionary diverged species using RNA Seq, where experimental artifacts can mimic evolutionary effects.GEO Accession Number: GSE32679