Jesse M. McFarland
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jesse M. McFarland.
Journal of the American Chemical Society | 2009
John M. Antos; Jesse M. McFarland; Anthony T. Iavarone; Matthew B. Francis
Significant improvements have been made to a previously reported tryptophan modification method using rhodium carbenoids in aqueous solution, allowing the reaction to proceed at pH 6-7. This technique is based on the discovery that N-(tert-butyl)hydroxylamine promotes indole modification with rhodium carbenoids over a broad pH range (2-7). This methodology was demonstrated on peptide and protein substrates, generally yielding 40-60% conversion with excellent tryptophan chemoselectivity. The solvent accessibility of the indole side chains was found to be a key factor in successful carbenoid addition, as demonstrated by conducting the reaction at temperatures high enough to cause thermal denaturation of the protein substrate. Progress toward the expression of proteins bearing solvent accessible tryptophan residues as reactive handles for modification with rhodium carbenoids is also reported.
Bioconjugate Chemistry | 2014
Penelope M. Drake; Aaron E. Albers; Jeanne Baker; Stefanie Bañas; Robyn M. Barfield; Abhijit Bhat; Gregory W. de Hart; Albert W. Garofalo; Patrick G. Holder; Lesley C. Jones; Romas Kudirka; Jesse M. McFarland; Wes Zmolek; David Rabuka
It is becoming increasingly clear that site-specific conjugation offers significant advantages over conventional conjugation chemistries used to make antibody–drug conjugates (ADCs). Site-specific payload placement allows for control over both the drug-to-antibody ratio (DAR) and the conjugation site, both of which play an important role in governing the pharmacokinetics (PK), disposition, and efficacy of the ADC. In addition to the DAR and site of conjugation, linker composition also plays an important role in the properties of an ADC. We have previously reported a novel site-specific conjugation platform comprising linker payloads designed to selectively react with site-specifically engineered aldehyde tags on an antibody backbone. This chemistry results in a stable C–C bond between the antibody and the cytotoxin payload, providing a uniquely stable connection with respect to the other linker chemistries used to generate ADCs. The flexibility and versatility of the aldehyde tag conjugation platform has enabled us to undertake a systematic evaluation of the impact of conjugation site and linker composition on ADC properties. Here, we describe the production and characterization of a panel of ADCs bearing the aldehyde tag at different locations on an IgG1 backbone conjugated using Hydrazino-iso-Pictet-Spengler (HIPS) chemistry. We demonstrate that in a panel of ADCs with aldehyde tags at different locations, the site of conjugation has a dramatic impact on in vivo efficacy and pharmacokinetic behavior in rodents; this advantage translates to an improved safety profile in rats as compared to a conventional lysine conjugate.
Journal of the American Chemical Society | 2010
Rebekah A. Miller; Nicholas Stephanopoulos; Jesse M. McFarland; Andrew S. Rosko; Phillip L. Geissler; Matthew B. Francis
Self-assembling, light harvesting arrays of organic chromophores can be templated using the tobacco mosaic virus coat protein (TMVP). The efficiency of energy transfer within systems containing a high ratio of donors to acceptors shows a strong dependence on the TMVP assembly state. Rod and disk assemblies derived from a single stock of chromophore-labeled protein exhibit drastically different levels of energy transfer, with rods significantly outperforming disks. The origin of the superior transfer efficiency was probed through the controlled introduction of photoinactive conjugates into the assemblies. The efficiency of the rods showed a linear dependence on the proportion of deactivated chromophores, suggesting the availability of redundant energy transfer pathways that can circumvent defect sites. Similar disk-based systems were markedly less efficient at all defect levels. To examine these differences further, the brightness of donor-only systems was measured as a function of defect incorporation. In rod assemblies, the photophysical properties of the donor chromophores showed a significant dependence on the number of defects. These differences can be partly attributed to vertical energy transfer events in rods that occur more rapidly than the horizontal transfers in disks. Using these geometries and the previously measured energy transfer rates, computational models were developed to understand this behavior in more detail and to guide the optimization of future systems. These simulations have revealed that significant differences in excited state dissipation rates likely also contribute to the greater efficiency of the rods and that statistical variations in the assembly process play a more minor role.
Journal of the American Chemical Society | 2008
Jesse M. McFarland; Neel S. Joshi; Matthew B. Francis
A three-component Mannich-type electrophilic aromatic substitution reaction was previously developed to target the phenolic side chain of tyrosine residues on proteins. This reaction proceeds under mild conditions and provides a convenient alternative to lysine-targeting strategies. However, the use of reactive aldehydes, such as formaldehyde, warrants careful inspection of the reaction products to ensure that other modifications have not occurred. Through the use of isotopically enriched reagents, nuclear magnetic resonance (NMR)-based studies were used to obtain structural confirmation of the tyrosine-modification products. These experiments also revealed the formation of a reaction byproduct arising from the indole ring of tryptophan residues. Cysteine residues were shown to not participate in the reaction, except in the case of a reduced disulfide, which formed a dithioacetal. We anticipate that this analysis method will prove useful for the detailed study of a number of bioconjugation reactions.
Journal of the American Chemical Society | 2014
Samantha I. Liang; Jesse M. McFarland; David Rabuka; Zev J. Gartner
Expansion of antibody scaffold diversity has the potential to expand the neutralizing capacity of the immune system and to generate enhanced therapeutics and probes. Systematic exploration of scaffold diversity could be facilitated with a modular and chemical scaffold for assembling proteins, such as DNA. However, such efforts require simple, modular, and site-specific methods for coupling antibody fragments or bioactive proteins to nucleic acids. To address this need, we report a modular approach for conjugating synthetic oligonucleotides to proteins with aldehyde tags at either terminus or internal loops. The resulting conjugates are assembled onto DNA-based scaffolds with low nanometer spatial resolution and can bind to live cells. Thus, this modular and site-specific conjugation strategy provides a new tool for exploring the potential of expanded scaffold diversity in immunoglobulin-based probes and therapeutics.
Organic Chemistry Insights | 2015
Jesse M. McFarland; David Rabuka
Genetic fusions of either full enzymes or peptide tags with a protein of interest have enabled the synthesis of protein conjugates with precise control over the site of attachment and number of payloads incorporated. Engineering of protein glycans, depending on the application, can lead to similar control for nonengineered glycoproteins. Recent advances in the field of chemoenzymatic modifications of proteins for site-specific protein conjugation will be reviewed. These techniques have been used in an array of fields for the execution of innovative and valuable experiments. Specific industrial applications of these technologies will be highlighted.
Molecular Cancer Therapeutics | 2018
Penelope M. Drake; Adam Carlson; Jesse M. McFarland; Stefanie Bañas; Robyn M. Barfield; Wesley Zmolek; Yun Cheol Kim; Betty C.B. Huang; Romas Kudirka; David Rabuka
Hematologically derived tumors make up ∼10% of all newly diagnosed cancer cases in the United States. Of these, the non-Hodgkin lymphoma (NHL) designation describes a diverse group of cancers that collectively rank among the top 10 most commonly diagnosed cancers worldwide. Although long-term survival trends are improving, there remains a significant unmet clinical need for treatments to help patients with relapsed or refractory disease, one cause of which is drug efflux through upregulation of xenobiotic pumps, such as MDR1. CD22 is a clinically validated target for the treatment of NHL, but no anti-CD22 agents have yet been approved for this indication. Recent approval of an anti-CD22 antibody–drug conjugate (ADC) for the treatment of relapsed/refractory ALL supports the rationale for targeting this protein. An opportunity exists for a next-generation anti-CD22 antibody–drug conjugate (ADC) to address unmet medical needs in the relapsed/refractory NHL population. We describe a site-specifically conjugated antibody–drug conjugate, made using aldehyde tag technology, targeted against CD22 and bearing a noncleavable maytansine payload that is resistant to MDR1-mediated efflux. The construct was efficacious against CD22+ NHL xenografts and could be repeatedly dosed in cynomolgus monkeys at 60 mg/kg with no observed significantly adverse effects. Exposure to total ADC at these doses (as assessed by AUC0-inf) indicated that the exposure needed to achieve efficacy was below tolerable limits. Together, the data suggest that this drug has the potential to be used effectively in patients with CD22+ tumors that have developed MDR1-related resistance to prior therapies. Mol Cancer Ther; 17(1); 161–8. ©2017 AACR.
Journal of the American Chemical Society | 2005
Jesse M. McFarland; Matthew B. Francis
Chemistry & Biology | 2015
Romas Kudirka; Robyn M. Barfield; Jesse M. McFarland; Aaron E. Albers; Gregory W. de Hart; Penelope M. Drake; Patrick G. Holder; Stefanie Bañas; Lesley C. Jones; Albert W. Garofalo; David Rabuka
ACS Medicinal Chemistry Letters | 2016
Romas Kudirka; Robyn M. Barfield; Jesse M. McFarland; Penelope M. Drake; Adam Carlson; Stefanie Bañas; Wes Zmolek; Albert W. Garofalo; David Rabuka