Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessica A. Filosa is active.

Publication


Featured researches published by Jessica A. Filosa.


Nature Neuroscience | 2006

Local potassium signaling couples neuronal activity to vasodilation in the brain

Jessica A. Filosa; Adrian D. Bonev; Stephen V. Straub; Andrea L. Meredith; M. Keith Wilkerson; Richard W. Aldrich; Mark T. Nelson

The mechanisms by which active neurons, via astrocytes, rapidly signal intracerebral arterioles to dilate remain obscure. Here we show that modest elevation of extracellular potassium (K+) activated inward rectifier K+ (Kir) channels and caused membrane potential hyperpolarization in smooth muscle cells (SMCs) of intracerebral arterioles and, in cortical brain slices, induced Kir-dependent vasodilation and suppression of SMC intracellular calcium (Ca2+) oscillations. Neuronal activation induced a rapid (<2 s latency) vasodilation that was greatly reduced by Kir channel blockade and completely abrogated by concurrent cyclooxygenase inhibition. Astrocytic endfeet exhibited large-conductance, Ca2+-sensitive K+ (BK) channel currents that could be activated by neuronal stimulation. Blocking BK channels or ablating the gene encoding these channels prevented neuronally induced vasodilation and suppression of arteriolar SMC Ca2+, without affecting the astrocytic Ca2+ elevation. These results support the concept of intercellular K+ channel–to–K+ channel signaling, through which neuronal activity in the form of an astrocytic Ca2+ signal is decoded by astrocytic BK channels, which locally release K+ into the perivascular space to activate SMC Kir channels and cause vasodilation.


Journal of Neuroinflammation | 2013

A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion

Helena Morrison; Jessica A. Filosa

BackgroundMicroglia cells continuously survey the healthy brain in a ramified morphology and, in response to injury, undergo progressive morphological and functional changes that encompass microglia activation. Although ideally positioned for immediate response to ischemic stroke (IS) and reperfusion, their progressive morphological transformation into activated cells has not been quantified. In addition, it is not well understood if diverse microglia morphologies correlate to diverse microglia functions. As such, the dichotomous nature of these cells continues to confound our understanding of microglia-mediated injury after IS and reperfusion. The purpose of this study was to quantitatively characterize the spatiotemporal pattern of microglia morphology during the evolution of cerebral injury after IS and reperfusion.MethodsMale C57Bl/6 mice were subjected to focal cerebral ischemia and periods of reperfusion (0, 8 and 24 h). The microglia process length/cell and number of endpoints/cell was quantified from immunofluorescent confocal images of brain regions using a skeleton analysis method developed for this study. Live cell morphology and process activity were measured from movies acquired in acute brain slices from GFP-CX3CR1 transgenic mice after IS and 24-h reperfusion. Regional CD11b and iNOS expressions were measured from confocal images and Western blot, respectively, to assess microglia proinflammatory function.ResultsQuantitative analysis reveals a significant spatiotemporal relationship between microglia morphology and evolving cerebral injury in the ipsilateral hemisphere after IS and reperfusion. Microglia were both hyper- and de-ramified in striatal and cortical brain regions (respectively) after 60 min of focal cerebral ischemia. However, a de-ramified morphology was prominent when ischemia was coupled to reperfusion. Live microglia were de-ramified, and, in addition, process activity was severely blunted proximal to the necrotic core after IS and 24 h of reperfusion. CD11b expression, but not iNOS expression, was increased in regions of hyper- and de-ramified microglia during the course of ischemic stroke and 24 h of reperfusion.ConclusionsOur findings illustrate that microglia activation after stroke includes both increased and decreased cell ramification. Importantly, quantitative analyses of microglial morphology and activity are feasible and, in future studies, would assist in the comprehensive identification and stratification of their dichotomous contribution toward cerebral injury and recovery during IS and reperfusion.


American Journal of Physiology-heart and Circulatory Physiology | 2008

Tone-dependent vascular responses to astrocyte-derived signals.

Victor Blanco; Javier E. Stern; Jessica A. Filosa

A growing number of studies support an important contribution of astrocytes to neurovascular coupling, i.e., the phenomenon by which variations in neuronal activity trigger localized changes in blood flow that serve to match the metabolic demands of neurons. However, since both constriction and dilations have been observed in brain parenchymal arterioles upon astrocyte stimulation, the specific influences of these cells on the vasculature remain unclear. Using acute brain slices, we present evidence showing that the specific degree of constriction of rat cortical arterioles (vascular tone) is a key determinant of the magnitude and polarity of the diameter changes elicited by signals associated with neurovascular coupling. Thus elevation of extracellular K+ concentration, stimulation of metabotropic glutamate receptors (mGluR), or 11,12-epoxyeicosatrienoic acid application all elicited vascular responses that were affected by the particular resting arteriolar tone. Interestingly, the data suggest that the extent and/or polarity of the vascular responses are influenced by a delimited set point centered between 30 and 40% tone. In addition, we report that distinct, tone-dependent effects on arteriolar diameter occur upon stimulation of mGluR during inhibition of enzymes of the arachidonic acid pathway [i.e., phospholipase A2, cytochrome P-450 (CYP) omega-hydroxylase, CYP epoxygenase, and cycloxygenase-1]. Our findings may reconcile previous evidence in which direct astrocytic stimulation elicited either vasoconstrictions or vasodilations and also suggest the novel concept that, in addition to participating in functional hyperemia, astrocyte-derived signals play a role in adjusting vascular tone to a range where dilator responses are optimal.


Glia | 2014

Hormones and diet, but not body weight, control hypothalamic microglial activity.

Yuanqing Gao; Nickki Ottaway; Sonja C. Schriever; Beata Legutko; Cristina García-Cáceres; Esther de la Fuente; Clarita Mergen; Susanne Bour; Joshua P. Thaler; Randy J. Seeley; Jessica A. Filosa; Javier E. Stern; Diego Perez-Tilve; Michael W. Schwartz; Matthias H. Tschöp; Chun Xia Yi

The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high‐fat diet (HFD)‐induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory processes within the hypothalamus. To further investigate the metabolic causes and molecular underpinnings of such glial activation, we analyzed the microglial activity in wild‐type (WT), monogenic obese ob/ob (leptin deficient), db/db (leptin‐receptor mutation), and Type‐4 melanocortin receptor knockout (MC4R KO) mice on either a HFD or on standardized chow (SC) diet. Following HFD exposure, we observed a significant increase in the total number of ARC microglia, immunoreactivity of ionized calcium binding adaptor molecule 1 (iba1‐ir), cluster of differentiation 68 (CD68‐ir), and ramification of microglial processes. The ob/ob mice had significantly less iba1‐ir and ramifications. Leptin replacement rescued these phenomena. The db/db mice had similar iba1‐ir comparable with WT mice but had significantly lower CD68‐ir and more ramifications than WT mice. After 2 weeks of HFD, ob/ob mice showed an increase of iba1‐ir, and db/db mice showed increase of CD68‐ir. Obese MC4R KO mice fed a SC diet had comparable iba1‐ir and CD68‐ir with WT mice but had significantly more ramifications than WT mice. Intriguingly, treatment of DIO mice with glucagon‐like peptide‐1 receptor agonists reduced microglial activation independent of body weight. Our results show that diet type, adipokines, and gut signals, but not body weight, affect the presence and activity levels of hypothalamic microglia in obesity. GLIA 2013;62:17–25


Neuron | 2013

Dendritic Peptide Release Mediates Interpopulation Crosstalk between Neurosecretory and Preautonomic Networks

Sook Jin Son; Jessica A. Filosa; Evgeniy S. Potapenko; Vinicia Campana Biancardi; Hong Zheng; Kaushik P. Patel; Vicky A. Tobin; Mike Ludwig; Javier E. Stern

Although communication between neurons is considered a function of the synapse, neurons also release neurotransmitter from their dendrites. We found that dendritic transmitter release coordinates activity across distinct neuronal populations to generate integrative homeostatic responses. We show that activity-dependent vasopressin release from hypothalamic neuroendocrine neurons in the paraventricular nucleus stimulates neighboring (~100 μm soma-to-soma) presympathetic neurons, resulting in a sympathoexcitatory population response. This interpopulation crosstalk was engaged by an NMDA-mediated increase in dendritic Ca(2+), influenced by vasopressins ability to diffuse in the extracellular space, and involved activation of CAN channels at the target neurons. Furthermore, we demonstrate that this interpopulation crosstalk plays a pivotal role in the generation of a systemic, polymodal neurohumoral response to a hyperosmotic challenge. Because dendritic release is emerging as a widespread process, our results suggest that a similar mechanism could mediate interpopulation crosstalk in other brain systems, particularly those involved in generating complex behaviors.


Hypertension | 2014

Circulating Angiotensin II Gains Access to the Hypothalamus and Brain Stem During Hypertension via Breakdown of the Blood–Brain Barrier

Vinicia Campana Biancardi; Sook Jin Son; Sahra Ahmadi; Jessica A. Filosa; Javier E. Stern

Angiotensin II–mediated vascular brain inflammation emerged as a novel pathophysiological mechanism in neurogenic hypertension. However, the precise underlying mechanisms and functional consequences in relation to blood–brain barrier (BBB) integrity and central angiotensin II actions mediating neurohumoral activation in hypertension are poorly understood. Here, we aimed to determine whether BBB permeability within critical hypothalamic and brain stem regions involved in neurohumoral regulation was altered during hypertension. Using digital imaging quantification after intravascularly injected fluorescent dyes and immunohistochemistry, we found increased BBB permeability, along with altered key BBB protein constituents, in spontaneously hypertensive rats within the hypothalamic paraventricular nucleus, the nucleus of the solitary tract, and the rostral ventrolateral medulla, all critical brain regions known to contribute to neurohumoral activation during hypertension. BBB disruption, including increased permeability and downregulation of constituent proteins, was prevented in spontaneously hypertensive rats treated with the AT1 receptor antagonist losartan, but not with hydralazine, a direct vasodilator. Importantly, we found circulating angiotensin II to extravasate into these brain regions, colocalizing with neurons and microglial cells. Taken together, our studies reveal a novel angiotensin II–mediated feed-forward mechanism during hypertension, by which circulating angiotensin II evokes increased BBB permeability, facilitating in turn its access to critical brain regions known to participate in blood pressure regulation.


Experimental Physiology | 2007

Neurovascular coupling in the mammalian brain

Jessica A. Filosa; Victor Blanco

Normal brain function requires proper supply of oxygen and glucose in a timely and local manner. This is achieved through an orchestrated intercellular communication between neurones, astrocytes and microvessels that results in a rapid and restricted increase in cerebral blood flow, a process known as neurovascular coupling. Astrocytic end‐feet make close contacts with neuronal synapses and blood vessels and, given their ability to release vasoactive signals following neuronal activation, have been recognized as key intermediaries in the neurovascular response. Both dilating and constricting signals appear to be released from astrocytes upon increases in intracellular Ca2+ concentration, and both dilatation and constriction of brain vessels have been observed in previous studies. In this article, we discuss the various astrocyte‐derived vasodilating and vasoconstricting signals, their interactions and effects on astrocytes and vascular smooth muscle cells, and suggest the importance of the intrinsic properties of the latter cell type on the overall neurovascular response. We present a working model in which the rise in astrocytic Ca2+ following neuronal activation leads not only to the rapid activation of calcium‐activated K+ channels in astrocytic end‐feet, but also to their modulation by metabolites of the arachidonic acid pathway, which in general have been proposed to act on vascular smooth muscle cells rather than on astrocytes. We propose that this latter mechanism may in turn modulate K+ signalling from astrocytes to smooth muscle cells, influencing the overall effects of the vasodilating and vasoconstricting signals released during neuronal activation.


Neuroscience | 2016

Beyond neurovascular coupling, role of astrocytes in the regulation of vascular tone

Jessica A. Filosa; Helena Morrison; Jennifer A. Iddings; W. Du; Ki Jung Kim

The brain possesses two intricate mechanisms that fulfill its continuous metabolic needs: cerebral autoregulation, which ensures constant cerebral blood flow over a wide range of arterial pressures and functional hyperemia, which ensures rapid delivery of oxygen and glucose to active neurons. Over the past decade, a number of important studies have identified astrocytes as key intermediaries in neurovascular coupling (NVC), the mechanism by which active neurons signal blood vessels to change their diameter. Activity-dependent increases in astrocytic Ca(2+) activity are thought to contribute to the release of vasoactive substances that facilitate arteriole vasodilation. A number of vasoactive signals have been identified and their role on vessel caliber assessed both in vitro and in vivo. In this review, we discuss mechanisms implicating astrocytes in NVC-mediated vascular responses, limitations encountered as a result of the challenges in maintaining all the constituents of the neurovascular unit intact and deliberate current controversial findings disputing a main role for astrocytes in NVC. Finally, we briefly discuss the potential role of pericytes and microglia in NVC-mediated processes.


Circulation | 2015

Adipocyte-Derived Hormone Leptin Is a Direct Regulator of Aldosterone Secretion, Which Promotes Endothelial Dysfunction and Cardiac Fibrosis.

Anne-Cecile Huby; Galina Antonova; Jake Groenendyk; Celso E. Gomez-Sanchez; Wendy B. Bollag; Jessica A. Filosa; Eric J. Belin de Chantemèle

Background— In obesity, the excessive synthesis of aldosterone contributes to the development and progression of metabolic and cardiovascular dysfunctions. Obesity-induced hyperaldosteronism is independent of the known regulators of aldosterone secretion, but reliant on unidentified adipocyte-derived factors. We hypothesized that the adipokine leptin is a direct regulator of aldosterone synthase (CYP11B2) expression and aldosterone release and promotes cardiovascular dysfunction via aldosterone-dependent mechanisms. Methods and Results— Immunostaining of human adrenal cross-sections and adrenocortical cells revealed that adrenocortical cells coexpress CYP11B2 and leptin receptors. Measurements of adrenal CYP11B2 expression and plasma aldosterone levels showed that increases in endogenous (obesity) or exogenous (infusion) leptin dose-dependently raised CYP11B2 expression and aldosterone without elevating plasma angiotensin II, potassium or corticosterone. Neither angiotensin II receptors blockade nor &agr; and &bgr; adrenergic receptors inhibition blunted leptin-induced aldosterone secretion. Identical results were obtained in cultured adrenocortical cells. Enhanced leptin signaling elevated CYP11B2 expression and plasma aldosterone, whereas deficiency in leptin or leptin receptors blunted obesity-induced increases in CYP11B2 and aldosterone, ruling out a role for obesity per se. Leptin increased intracellular calcium, elevated calmodulin and calmodulin-kinase II expression, whereas calcium chelation blunted leptin-mediated increases in CYP11B2, in adrenocortical cells. Mineralocorticoid receptor blockade blunted leptin-induced endothelial dysfunction and increases in cardiac fibrotic markers. Conclusions— Leptin is a newly described regulator of aldosterone synthesis that acts directly on adrenal glomerulosa cells to increase CYP11B2 expression and enhance aldosterone production via calcium-dependent mechanisms. Furthermore, leptin-mediated aldosterone secretion contributes to cardiovascular disease by promoting endothelial dysfunction and the expression of profibrotic markers in the heart.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Astrocyte regulation of cerebral vascular tone

Jessica A. Filosa; Jennifer A. Iddings

Cerebral blood flow is controlled by two crucial processes, cerebral autoregulation (CA) and neurovascular coupling (NVC) or functional hyperemia. Whereas CA ensures constant blood flow over a wide range of systemic pressures, NVC ensures rapid spatial and temporal increases in cerebral blood flow in response to neuronal activation. The focus of this review is to discuss the cellular mechanisms by which astrocytes contribute to the regulation of vascular tone in terms of their participation in NVC and, to a lesser extent, CA. We discuss evidence for the various signaling modalities by which astrocytic activation leads to vasodilation and vasoconstriction of parenchymal arterioles. Moreover, we provide a rationale for the contribution of astrocytes to pressure-induced increases in vascular tone via the vasoconstrictor 20-HETE (a downstream metabolite of arachidonic acid). Along these lines, we highlight the importance of the transient receptor potential channel of the vanilloid family (TRPV4) as a key molecular determinant in the regulation of vascular tone in cerebral arterioles. Finally, we discuss current advances in the technical tools available to study NVC mechanisms in the brain as it relates to the participation of astrocytes.

Collaboration


Dive into the Jessica A. Filosa's collaboration.

Top Co-Authors

Avatar

Javier E. Stern

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor Blanco

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Ki Jung Kim

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adviye Ergul

United States Department of Veterans Affairs

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sook Jin Son

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenting Du

Georgia Regents University

View shared research outputs
Researchain Logo
Decentralizing Knowledge