Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessica A. Gorski is active.

Publication


Featured researches published by Jessica A. Gorski.


The Journal of Neuroscience | 2004

Early Striatal Dendrite Deficits followed by Neuron Loss with Advanced Age in the Absence of Anterograde Cortical Brain-Derived Neurotrophic Factor

Zachary C. Baquet; Jessica A. Gorski; Kevin R. Jones

Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, modulates neuronal survival, differentiation, and synaptic function. Reduced BDNF expression in the cortex caused by mutation of the huntingtin gene has been suggested to play a role in the striatal degeneration observed in Huntingtons disease. BDNF expression rises dramatically in the cortex during the first few weeks of postnatal life in mice. Previously, it has been impossible to study the specific long-term effects of BDNF absence on CNS structures because of the early postnatal lethality of BDNF-/- mice. Mice harboring a floxed BDNF gene were bred with Emx1IREScre/+ mice to generate Emx-BDNFKO mice that lack cortical BDNF but are viable. Adult Emx-BDNFKO mice display a hindlimb clasping phenotype similar to that observed in mouse models of Huntingtons disease. The striatum of postnatal Emx-BDNFKO mice was reduced in volume compared with controls, and the most abundant neuron type of the striatum, medium spiny neurons (MSNs), had shrunken cell somas, thinner dendrites, and fewer dendritic spines at 35 d of age. Although significant striatal neuron losses were not detected at 35 or 120 d postnatal, 35% of striatal neurons were missing in Emx-BDNFKO mice aged beyond 1 year. Thus, cortical BDNF, although not required for the generation or near-term survival of MSN, is necessary for normal striatal neuron dendrite morphology during the period when BDNF expression rises in the cortex. Furthermore, a long-term in vivo requirement for cortical BDNF in supporting the survival of MSNs is revealed.


Nature | 2005

Ephrin signalling controls brain size by regulating apoptosis of neural progenitors

Vanessa Depaepe; Nathalie Suarez-Gonzalez; Audrey Dufour; Lara Passante; Jessica A. Gorski; Kevin R. Jones; Catherine Ledent; Pierre Vanderhaeghen

Mechanisms controlling brain size include the regulation of neural progenitor cell proliferation, differentiation, survival and migration. Here we show that ephrin-A/EphA receptor signalling plays a key role in controlling the size of the mouse cerebral cortex by regulating cortical progenitor cell apoptosis. In vivo gain of EphA receptor function, achieved through ectopic expression of ephrin-A5 in early cortical progenitors expressing EphA7, caused a transient wave of neural progenitor cell apoptosis, resulting in premature depletion of progenitors and a subsequent dramatic decrease in cortical size. In vitro treatment with soluble ephrin-A ligands similarly induced the rapid death of cultured dissociated cortical progenitors in a caspase-3-dependent manner, thereby confirming a direct effect of ephrin/Eph signalling on apoptotic cascades. Conversely, in vivo loss of EphA function, achieved through EphA7 gene disruption, caused a reduction in apoptosis occurring normally in forebrain neural progenitors, resulting in an increase in cortical size and, in extreme cases, exencephalic forebrain overgrowth. Together, these results identify ephrin/Eph signalling as a physiological trigger for apoptosis that can alter brain size and shape by regulating the number of neural progenitors.


Nature Neuroscience | 2004

Netrin requires focal adhesion kinase and Src family kinases for axon outgrowth and attraction

Guofa Liu; Hilary E. Beggs; Claudia Jürgensen; Hwan Tae Park; Hao Tang; Jessica A. Gorski; Kevin R. Jones; Louis F. Reichardt; Jane Y. Wu; Yi Rao

Although netrins are an important family of neuronal guidance proteins, intracellular mechanisms that mediate netrin function are not well understood. Here we show that netrin-1 induces tyrosine phosphorylation of proteins including focal adhesion kinase (FAK) and the Src family kinase Fyn. Blockers of Src family kinases inhibited FAK phosphorylation and axon outgrowth and attraction by netrin. Dominant-negative FAK and Fyn mutants inhibited the attractive turning response to netrin. Axon outgrowth and attraction induced by netrin-1 were significantly reduced in neurons lacking the FAK gene. Our results show the biochemical and functional links between netrin, a prototypical neuronal guidance cue, and FAK, a central player in intracellular signaling that is crucial for cell migration.


Neuroscience | 2003

Learning deficits in forebrain-restricted brain-derived neurotrophic factor mutant mice.

Jessica A. Gorski; S.A. Balogh; Jeanne M. Wehner; Kevin R. Jones

Brain-derived neurotrophic factor (BDNF) participates in synaptic plasticity and the adaptive changes in the strength of communication between neurons thought to underlie aspects of behavioral adaptation. By selectively deleting BDNF from the forebrain of mice using the Cre site-specific DNA recombinase, we were able to study the requirements for BDNF in behaviors such as learning and anxiety. Early-onset forebrain-restricted BDNF mutant mice (Emx-BDNF(KO)) that develop in the absence of BDNF in the dorsal cortex, hippocampus, and parts of the ventral cortex and amygdala failed to learn the Morris Water Maze task, a hippocampal-dependent visuo-spatial learning task. Freezing during all phases of cued-contextual fear conditioning, a behavioral task designed to study hippocampal-dependent associative learning, was enhanced. These mice learned a brightness discrimination task well but were impaired in a more difficult pattern discrimination task. Emx-BDNF(KO) mice did not exhibit altered sensory processing and gating, as measured by the acoustic startle response or prepulse inhibition of the startle response. Although they were less active in an open-field arena, they did not show alterations in anxiety, as measured in the elevated-plus maze, black-white chamber or mirrored chamber tasks. Combined, these data indicate that although an absence of forebrain BDNF does not disrupt acoustic sensory processing or alter baseline anxiety, specific forms of learning are severely impaired.


Neuron | 2003

Inactivation of Numb and Numblike in Embryonic Dorsal Forebrain Impairs Neurogenesis and Disrupts Cortical Morphogenesis

Huashun Li; Denan Wang; Qin Shen; Marcus D. Schonemann; Jessica A. Gorski; Kevin R. Jones; Sally Temple; Lily Yeh Jan; Yuh Nung Jan

Numb and Numblike, conserved homologs of Drosophila Numb, have been implicated in cortical neurogenesis; however, analysis of their involvement in later stages of cortical development has been hampered by early lethality of double mutants in previous studies. Using Emx1(IREScre) to induce more restricted inactivation of Numb in the dorsal forebrain of numblike null mice beginning at E9.5, we have generated viable double mutants that displayed striking brain defects. It was thus possible to examine neurogenesis during the later peak phase (E12.5-E16.5). Loss of Numb and Numblike in dorsal forebrain resulted in neural progenitor hyperproliferation, delayed cell cycle exit, impaired neuronal differentiation, and concomitant defects in cortical morphogenesis. These findings reveal novel and essential function of Numb and Numblike during the peak period of cortical neurogenesis. Further, these double mutant mice provide an unprecedented viable animal model for severe brain malformations due to defects in neural progenitor cells.


The Journal of Neuroscience | 2012

AKAP150-Anchored Calcineurin Regulates Synaptic Plasticity by Limiting Synaptic Incorporation of Ca2+-Permeable AMPA Receptors

Jennifer L. Sanderson; Jessica A. Gorski; Emily S. Gibson; Philip Lam; Ronald K. Freund; Wallace S. Chick; Mark L. Dell'Acqua

AMPA receptors (AMPARs) are tetrameric ion channels assembled from GluA1–GluA4 subunits that mediate the majority of fast excitatory synaptic transmission in the brain. In the hippocampus, most synaptic AMPARs are composed of GluA1/2 or GluA2/3 with the GluA2 subunit preventing Ca2+ influx. However, a small number of Ca2+-permeable GluA1 homomeric receptors reside in extrasynaptic locations where they can be rapidly recruited to synapses during synaptic plasticity. Phosphorylation of GluA1 S845 by the cAMP-dependent protein kinase (PKA) primes extrasynaptic receptors for synaptic insertion in response to NMDA receptor Ca2+ signaling during long-term potentiation (LTP), while phosphatases dephosphorylate S845 and remove synaptic and extrasynaptic GluA1 during long-term depression (LTD). PKA and the Ca2+-activated phosphatase calcineurin (CaN) are targeted to GluA1 through binding to A-kinase anchoring protein 150 (AKAP150) in a complex with PSD-95, but we do not understand how the opposing activities of these enzymes are balanced to control plasticity. Here, we generated AKAP150ΔPIX knock-in mice to selectively disrupt CaN anchoring in vivo. We found that AKAP150ΔPIX mice lack LTD but express enhanced LTP at CA1 synapses. Accordingly, basal GluA1 S845 phosphorylation is elevated in AKAP150ΔPIX hippocampus, and LTD-induced dephosphorylation and removal of GluA1, AKAP150, and PSD-95 from synapses are impaired. In addition, basal synaptic activity of GluA2-lacking AMPARs is increased in AKAP150ΔPIX mice and pharmacologic antagonism of these receptors restores normal LTD and inhibits the enhanced LTP. Thus, AKAP150-anchored CaN opposes PKA phosphorylation of GluA1 to restrict synaptic incorporation of Ca2+-permeable AMPARs both basally and during LTP and LTD.


Journal of Cell Biology | 2006

Embryonic cortical neural stem cells migrate ventrally and persist as postnatal striatal stem cells

Sandrine Willaime-Morawek; Raewyn M. Seaberg; Claudia M.C. Batista; Etienne Labbé; Liliana Attisano; Jessica A. Gorski; Kevin R. Jones; Angela Kam; Cindi M. Morshead; Derek van der Kooy

Embryonic cortical neural stem cells apparently have a transient existence, as they do not persist in the adult cortex. We sought to determine the fate of embryonic cortical stem cells by following Emx1IREScre; LacZ/EGFP double-transgenic murine cells from midgestation into adulthood. Lineage tracing in combination with direct cell labeling and time-lapse video microscopy demonstrated that Emx1-lineage embryonic cortical stem cells migrate ventrally into the striatal germinal zone (GZ) perinatally and intermingle with striatal stem cells. Upon integration into the striatal GZ, cortical stem cells down-regulate Emx1 and up-regulate Dlx2, which is a homeobox gene characteristic of the developing striatum and striatal neural stem cells. This demonstrates the existence of a novel dorsal-to-ventral migration of neural stem cells in the perinatal forebrain.


Neuroscience | 2012

Sustained expression of brain-derived neurotrophic factor is required for maintenance of dendritic spines and normal behavior.

Alison J. Vigers; Dipesh S. Amin; Tiffany Talley-Farnham; Jessica A. Gorski; Baoji Xu; Kevin R. Jones

Brain-derived neurotrophic factor (BDNF) plays important roles in the development, maintenance, and plasticity of the mammalian forebrain. These functions include regulation of neuronal maturation and survival, axonal and dendritic arborization, synaptic efficacy, and modulation of complex behaviors including depression and spatial learning. Although analysis of mutant mice has helped establish essential developmental functions for BDNF, its requirement in the adult is less well documented. We have studied late-onset forebrain-specific BDNF knockout (CaMK-BDNF(KO)) mice, in which BDNF is lost primarily from the cortex and hippocampus in early adulthood, well after BDNF expression has begun in these structures. We found that although CaMK-BDNF(KO) mice grew at a normal rate and can survive more than a year, they had smaller brains than wild-type siblings. The CaMK-BDNF(KO) mice had generally normal behavior in tests for ataxia and anxiety, but displayed reduced spatial learning ability in the Morris water task and increased depression in the Porsolt swim test. These behavioral deficits were very similar to those we previously described in an early-onset forebrain-specific BDNF knockout. To identify an anatomical correlate of the abnormal behavior, we quantified dendritic spines in cortical neurons. The spine density of CaMK-BDNF(KO) mice was normal at P35, but by P84, there was a 30% reduction in spine density. The strong similarities we find between early- and late-onset BDNF knockouts suggest that BDNF signaling is required continuously in the CNS for the maintenance of some forebrain circuitry also affected by developmental BDNF depletion.


Development | 2007

Conditional activation of Pax6 in the developing cortex of transgenic mice causes progenitor apoptosis

Joachim Berger; Silke Berger; Tran Cong Tuoc; Marcello D'Amelio; Francesco Cecconi; Jessica A. Gorski; Kevin R. Jones; Peter Gruss; Anastassia Stoykova

During development, Pax6 is expressed in a rostrolateral-high to caudomedial-low gradient in the majority of the cortical radial glial progenitors and endows them with neurogenic properties. Using a Cre/loxP-based approach, we studied the effect of conditional activation of two Pax6 isoforms, Pax6 and Pax6-5a, on the corticogenesis of transgenic mice. We found that activation of either Pax6 or Pax6-5a inhibits progenitor proliferation in the developing cortex. Upon activation of transgenic Pax6, specific progenitor pools with distinct endogenous Pax6 expression levels at different developmental stages show defects in cell cycle progression and in the acquisition of apoptotic or neuronal cell fate. The results provide new evidence for the complex role of Pax6 in mammalian corticogenesis.


The Journal of Neuroscience | 2002

Cortical Excitatory Neurons and Glia, But Not GABAergic Neurons, Are Produced in the Emx1-Expressing Lineage

Jessica A. Gorski; Tiffany Talley; Mengsheng Qiu; Luis Puelles; John L.R. Rubenstein; Kevin R. Jones

Collaboration


Dive into the Jessica A. Gorski's collaboration.

Top Co-Authors

Avatar

Kevin R. Jones

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Alison J. Vigers

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Baoji Xu

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Claudia Jürgensen

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Denan Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Dipesh S. Amin

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Emily S. Gibson

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Francesco Cecconi

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Tang

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge