Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessica A. Turner is active.

Publication


Featured researches published by Jessica A. Turner.


Frontiers in Systems Neuroscience | 2011

A Baseline for the Multivariate Comparison of Resting-State Networks

Elena A. Allen; Erik B. Erhardt; Eswar Damaraju; William Gruner; Judith M. Segall; Rogers F. Silva; Martin Havlicek; Srinivas Rachakonda; Jill Fries; Ravi Kalyanam; Andrew M. Michael; Arvind Caprihan; Jessica A. Turner; Tom Eichele; Steven Adelsheim; Angela D. Bryan; Juan Bustillo; Vincent P. Clark; Sarah W. Feldstein Ewing; Francesca M. Filbey; Corey C. Ford; Kent E. Hutchison; Rex E. Jung; Kent A. Kiehl; Piyadasa W. Kodituwakku; Yuko M. Komesu; Andrew R. Mayer; Godfrey D. Pearlson; John P. Phillips; Joseph Sadek

As the size of functional and structural MRI datasets expands, it becomes increasingly important to establish a baseline from which diagnostic relevance may be determined, a processing strategy that efficiently prepares data for analysis, and a statistical approach that identifies important effects in a manner that is both robust and reproducible. In this paper, we introduce a multivariate analytic approach that optimizes sensitivity and reduces unnecessary testing. We demonstrate the utility of this mega-analytic approach by identifying the effects of age and gender on the resting-state networks (RSNs) of 603 healthy adolescents and adults (mean age: 23.4 years, range: 12–71 years). Data were collected on the same scanner, preprocessed using an automated analysis pipeline based in SPM, and studied using group independent component analysis. RSNs were identified and evaluated in terms of three primary outcome measures: time course spectral power, spatial map intensity, and functional network connectivity. Results revealed robust effects of age on all three outcome measures, largely indicating decreases in network coherence and connectivity with increasing age. Gender effects were of smaller magnitude but suggested stronger intra-network connectivity in females and more inter-network connectivity in males, particularly with regard to sensorimotor networks. These findings, along with the analysis approach and statistical framework described here, provide a useful baseline for future investigations of brain networks in health and disease.


Journal of Cognitive Neuroscience | 2011

Behavioral interpretations of intrinsic connectivity networks

Angela R. Laird; P. Mickle Fox; Simon B. Eickhoff; Jessica A. Turner; Kimberly L. Ray; D. Reese McKay; David C. Glahn; Christian F. Beckmann; Stephen M. Smith; Peter T. Fox

An increasingly large number of neuroimaging studies have investigated functionally connected networks during rest, providing insight into human brain architecture. Assessment of the functional qualities of resting state networks has been limited by the task-independent state, which results in an inability to relate these networks to specific mental functions. However, it was recently demonstrated that similar brain networks can be extracted from resting state data and data extracted from thousands of task-based neuroimaging experiments archived in the BrainMap database. Here, we present a full functional explication of these intrinsic connectivity networks at a standard low order decomposition using a neuroinformatics approach based on the BrainMap behavioral taxonomy as well as a stratified, data-driven ordering of cognitive processes. Our results serve as a resource for functional interpretations of brain networks in resting state studies and future investigations into mental operations and the tasks that drive them.


Nature Genetics | 2012

Identification of common variants associated with human hippocampal and intracranial volumes

Jason L. Stein; Sarah E. Medland; A A Vasquez; Derrek P. Hibar; R. E. Senstad; Anderson M. Winkler; Roberto Toro; K Appel; R. Bartecek; Ørjan Bergmann; Manon Bernard; Andrew Anand Brown; Dara M. Cannon; M. Mallar Chakravarty; Andrea Christoforou; M. Domin; Oliver Grimm; Marisa Hollinshead; Avram J. Holmes; Georg Homuth; J.J. Hottenga; Camilla Langan; Lorna M. Lopez; Narelle K. Hansell; Kristy Hwang; Sungeun Kim; Gonzalo Laje; Phil H. Lee; Xinmin Liu; Eva Loth

Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimers disease and is reduced in schizophrenia, major depression and mesial temporal lobe epilepsy. Whereas many brain imaging phenotypes are highly heritable, identifying and replicating genetic influences has been difficult, as small effects and the high costs of magnetic resonance imaging (MRI) have led to underpowered studies. Here we report genome-wide association meta-analyses and replication for mean bilateral hippocampal, total brain and intracranial volumes from a large multinational consortium. The intergenic variant rs7294919 was associated with hippocampal volume (12q24.22; N = 21,151; P = 6.70 × 10−16) and the expression levels of the positional candidate gene TESC in brain tissue. Additionally, rs10784502, located within HMGA2, was associated with intracranial volume (12q14.3; N = 15,782; P = 1.12 × 10−12). We also identified a suggestive association with total brain volume at rs10494373 within DDR2 (1q23.3; N = 6,500; P = 5.81 × 10−7).


PLOS ONE | 2009

Hippocampal Atrophy as a Quantitative Trait in a Genome-Wide Association Study Identifying Novel Susceptibility Genes for Alzheimer's Disease

Steven G. Potkin; Guia Guffanti; Anita Lakatos; Jessica A. Turner; Frithjof Kruggel; James H. Fallon; Andrew J. Saykin; Alessandro Orro; Sara Lupoli; Erika Salvi; Michael W. Weiner; Fabio Macciardi

Background With the exception of APOE ε4 allele, the common genetic risk factors for sporadic Alzheimers Disease (AD) are unknown. Methods and Findings We completed a genome-wide association study on 381 participants in the ADNI (Alzheimers Disease Neuroimaging Initiative) study. Samples were genotyped using the Illumina Human610-Quad BeadChip. 516,645 unique Single Nucleotide Polymorphisms (SNPs) were included in the analysis following quality control measures. The genotype data and raw genetic data are freely available for download (LONI, http://www.loni.ucla.edu/ADNI/Data/). Two analyses were completed: a standard case-control analysis, and a novel approach using hippocampal atrophy measured on MRI as an objectively defined, quantitative phenotype. A General Linear Model was applied to identify SNPs for which there was an interaction between the genotype and diagnosis on the quantitative trait. The case-control analysis identified APOE and a new risk gene, TOMM40 (translocase of outer mitochondrial membrane 40), at a genome-wide significance level of≤10−6 (10−11 for a haplotype). TOMM40 risk alleles were approximately twice as frequent in AD subjects as controls. The quantitative trait analysis identified 21 genes or chromosomal areas with at least one SNP with a p-value≤10−6, which can be considered potential “new” candidate loci to explore in the etiology of sporadic AD. These candidates included EFNA5, CAND1, MAGI2, ARSB, and PRUNE2, genes involved in the regulation of protein degradation, apoptosis, neuronal loss and neurodevelopment. Thus, we identified common genetic variants associated with the increased risk of developing AD in the ADNI cohort, and present publicly available genome-wide data. Supportive evidence based on case-control studies and biological plausibility by gene annotation is provided. Currently no available sample with both imaging and genetic data is available for replication. Conclusions Using hippocampal atrophy as a quantitative phenotype in a genome-wide scan, we have identified candidate risk genes for sporadic Alzheimers disease that merit further investigation.


Journal of Biomedical Semantics | 2010

Modeling biomedical experimental processes with OBI

Ryan R. Brinkman; Mélanie Courtot; Dirk Derom; Jennifer Fostel; Yongqun He; Phillip Lord; James Malone; Helen Parkinson; Bjoern Peters; Philippe Rocca-Serra; Alan Ruttenberg; Susanna-Assunta Sansone; Larisa N. Soldatova; Christian J. Stoeckert; Jessica A. Turner; Jie Zheng

BackgroundExperimental descriptions are typically stored as free text without using standardized terminology, creating challenges in comparison, reproduction and analysis. These difficulties impose limitations on data exchange and information retrieval.ResultsThe Ontology for Biomedical Investigations (OBI), developed as a global, cross-community effort, provides a resource that represents biomedical investigations in an explicit and integrative framework. Here we detail three real-world applications of OBI, provide detailed modeling information and explain how to use OBI.ConclusionWe demonstrate how OBI can be applied to different biomedical investigations to both facilitate interpretation of the experimental process and increase the computational processing and integration within the Semantic Web. The logical definitions of the entities involved allow computers to unambiguously understand and integrate different biological experimental processes and their relevant components.AvailabilityOBI is available at http://purl.obolibrary.org/obo/obi/2009-11-02/obi.owl


NeuroImage: Clinical | 2014

Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia.

Eswar Damaraju; Elena A. Allen; Aysenil Belger; J.M. Ford; Sarah McEwen; Daniel H. Mathalon; Bryon A. Mueller; Godfrey D. Pearlson; Steven G. Potkin; Adrian Preda; Jessica A. Turner; Jatin G. Vaidya; T G M van Erp; V.D. Calhoun

Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length), and a dynamic sense, computed using sliding windows (44 s in length) and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical–subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group differences are weak or absent during other connectivity states. Dynamic analysis also revealed hypoconnectivity between the putamen and sensory networks during the same states of thalamic hyperconnectivity; notably, this finding cannot be observed in the static connectivity analysis. Finally, in post-hoc analyses we observed that the relationships between sub-cortical low frequency power and connectivity with sensory networks is altered in patients, suggesting different functional interactions between sub-cortical nuclei and sensorimotor cortex during specific connectivity states. While important differences between patients with schizophrenia and healthy controls have been identified, one should interpret the results with caution given the history of medication in patients. Taken together, our results support and expand current knowledge regarding dysconnectivity in schizophrenia, and strongly advocate the use of dynamic analyses to better account for and understand functional connectivity differences.


Schizophrenia Bulletin | 2009

Working memory and DLPFC inefficiency in schizophrenia: The FBIRN study

Steven G. Potkin; Jessica A. Turner; Gregory G. Brown; Gregory McCarthy; Douglas N. Greve; Gary H. Glover; Dara S. Manoach; Aysenil Belger; Michele T. Diaz; Cynthia G. Wible; J.M. Ford; Daniel H. Mathalon; Randy L. Gollub; John Lauriello; Daniel S. O'Leary; T G M van Erp; Arthur W. Toga; Adrian Preda; Kelvin O. Lim

BACKGROUND The Functional Imaging Biomedical Informatics Network is a consortium developing methods for multisite functional imaging studies. Both prefrontal hyper- or hypoactivity in chronic schizophrenia have been found in previous studies of working memory. METHODS In this functional magnetic resonance imaging (fMRI) study of working memory, 128 subjects with chronic schizophrenia and 128 age- and gender-matched controls were recruited from 10 universities around the United States. Subjects performed the Sternberg Item Recognition Paradigm1,2 with memory loads of 1, 3, or 5 items. A region of interest analysis examined the mean BOLD signal change in an atlas-based demarcation of the dorsolateral prefrontal cortex (DLPFC), in both groups, during both the encoding and retrieval phases of the experiment over the various memory loads. RESULTS Subjects with schizophrenia performed slightly but significantly worse than the healthy volunteers and showed a greater decrease in accuracy and increase in reaction time with increasing memory load. The mean BOLD signal in the DLPFC was significantly greater in the schizophrenic group than the healthy group, particularly in the intermediate load condition. A secondary analysis matched subjects for mean accuracy and found the same BOLD signal hyperresponse in schizophrenics. CONCLUSIONS The increase in BOLD signal change from minimal to moderate memory loads was greater in the schizophrenic subjects than in controls. This effect remained when age, gender, run, hemisphere, and performance were considered, consistent with inefficient DLPFC function during working memory. These findings from a large multisite sample support the concept not of hyper- or hypofrontality in schizophrenia, but rather DLPFC inefficiency that may be manifested in either direction depending on task demands. This redirects the focus of research from direction of difference to neural mechanisms of inefficiency.


Frontiers in Neuroinformatics | 2009

ALE Meta-Analysis Workflows Via the Brainmap Database: Progress Towards A Probabilistic Functional Brain Atlas.

Angela R. Laird; Simon B. Eickhoff; Florian Kurth; Peter Mickle Fox; Angela M. Uecker; Jessica A. Turner; Jennifer L. Robinson; Jack L. Lancaster; Peter T. Fox

With the ever-increasing number of studies in human functional brain mapping, an abundance of data has been generated that is ready to be synthesized and modeled on a large scale. The BrainMap database archives peak coordinates from published neuroimaging studies, along with the corresponding metadata that summarize the experimental design. BrainMap was designed to facilitate quantitative meta-analysis of neuroimaging results reported in the literature and supports the use of the activation likelihood estimation (ALE) method. In this paper, we present a discussion of the potential analyses that are possible using the BrainMap database and coordinate-based ALE meta-analyses, along with some examples of how these tools can be applied to create a probabilistic atlas and ontological system of describing function–structure correspondences.


Molecular Psychiatry | 2016

Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium

T G M van Erp; Derrek P. Hibar; Jerod Rasmussen; David C. Glahn; Godfrey D. Pearlson; Ole A. Andreassen; Ingrid Agartz; Lars T. Westlye; Unn K. Haukvik; Anders M. Dale; Ingrid Melle; Cecilie B. Hartberg; Oliver Gruber; Bernd Kraemer; David Zilles; Gary Donohoe; Sinead Kelly; Colm McDonald; Derek W. Morris; Dara M. Cannon; Aiden Corvin; Marise W J Machielsen; Laura Koenders; L. de Haan; Dick J. Veltman; Theodore D. Satterthwaite; Daniel H. Wolf; R.C. Gur; Raquel E. Gur; Steve Potkin

The profile of brain structural abnormalities in schizophrenia is still not fully understood, despite decades of research using brain scans. To validate a prospective meta-analysis approach to analyzing multicenter neuroimaging data, we analyzed brain MRI scans from 2028 schizophrenia patients and 2540 healthy controls, assessed with standardized methods at 15 centers worldwide. We identified subcortical brain volumes that differentiated patients from controls, and ranked them according to their effect sizes. Compared with healthy controls, patients with schizophrenia had smaller hippocampus (Cohen’s d=−0.46), amygdala (d=−0.31), thalamus (d=−0.31), accumbens (d=−0.25) and intracranial volumes (d=−0.12), as well as larger pallidum (d=0.21) and lateral ventricle volumes (d=0.37). Putamen and pallidum volume augmentations were positively associated with duration of illness and hippocampal deficits scaled with the proportion of unmedicated patients. Worldwide cooperative analyses of brain imaging data support a profile of subcortical abnormalities in schizophrenia, which is consistent with that based on traditional meta-analytic approaches. This first ENIGMA Schizophrenia Working Group study validates that collaborative data analyses can readily be used across brain phenotypes and disorders and encourages analysis and data sharing efforts to further our understanding of severe mental illness.


Human Brain Mapping | 2009

Dysregulation of Working Memory and Default- Mode Networks in Schizophrenia Using Independent Component Analysis, an fBIRN and MCIC Study

Kim Il Dae; Dara S. Manoach; Daniel H. Mathalon; Jessica A. Turner; Maggie V. Mannell; Greg Brown; Judith M. Ford; Randy L. Gollub; Tonya White; Cynthia G. Wible; Aysenil Belger; H. Jeremy Bockholt; Vince P. Clark; John Lauriello; Daniel S. O'Leary; Bryon A. Mueller; Kelvin O. Lim; Nancy C. Andreasen; Steve Potkin; Vince D. Calhoun

Deficits in working memory (WM) are a consistent neurocognitive marker for schizophrenia. Previous studies have suggested that WM is the product of coordinated activity in distributed functionally connected brain regions. Independent component analysis (ICA) is a data‐driven approach that can identify temporally coherent networks that underlie fMRI activity. We applied ICA to an fMRI dataset for 115 patients with chronic schizophrenia and 130 healthy controls by performing the Sternberg Item Recognition Paradigm. Here, we describe the first results using ICA to identify differences in the function of WM networks in schizophrenia compared to controls. ICA revealed six networks that showed significant differences between patients with schizophrenia and healthy controls. Four of these networks were negatively task‐correlated and showed deactivation across the posterior cingulate, precuneus, medial prefrontal cortex, anterior cingulate, inferior parietal lobules, and parahippocampus. These networks comprise brain regions known as the default‐mode network (DMN), a well‐characterized set of regions shown to be active during internal modes of cognition and implicated in schizophrenia. Two networks were positively task‐correlated, with one network engaging WM regions such as bilateral DLPFC and inferior parietal lobules while the other network engaged primarily the cerebellum. Our results suggest that DLPFC dysfunction in schizophrenia might be lateralized to the left and intrinsically tied to other regions such as the inferior parietal lobule and cingulate gyrus. Furthermore, we found that DMN dysfunction in schizophrenia exists across multiple subnetworks of the DMN and that these subnetworks are individually relevant to the pathophysiology of schizophrenia. In summary, this large multsite study identified multiple temporally coherent networks, which are aberrant in schizophrenia versus healthy controls and suggests that both task‐correlated and task‐anticorrelated networks may serve as potential biomarkers. Hum Brain Mapp, 2009.

Collaboration


Dive into the Jessica A. Turner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Bustillo

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Judith M. Ford

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aysenil Belger

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Adrian Preda

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge