Jessica E. Krick
California Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jessica E. Krick.
Monthly Notices of the Royal Astronomical Society | 2011
J. Merten; D. Coe; Renato de Alencar Dupke; Richard Massey; Adi Zitrin; E. S. Cypriano; Nobuhiro Okabe; Brenda Frye; Filiberto G. Braglia; Y. Jimenez-Teja; N. Benítez; Tom Broadhurst; J. Rhodes; Massimo Meneghetti; Leonidas A. Moustakas; Laerte Sodré; Jessica E. Krick; Joel N. Bregman
We present a detailed strong lensing, weak lensing and X-ray analysis of Abell 2744 (z = 0:308), one of the most actively merging galaxy clusters known. It appears to have unleashed ‘dark’, ‘ghost’, ‘bullet’ and ‘stripped’ substructures, each 10 14 M . The phenomenology is complex and will present a challenge for numerical simulations to reproduce. With new, multiband HST imaging, we identify 34 strongly-lensed images of 11 galaxies around the massive Southern ‘core’. Combining this with weak lensing data from HST, VLT and Subaru, we produce the most detailed mass map of this cluster to date. We also perform an independent analysis of archival Chandra X-ray imaging. Our analyses support a recent claim that the Southern core and Northwestern substructure are post-merger and exhibit morphology similar to the Bullet Cluster viewed from an angle. From the separation between X-ray emitting gas and lensing mass in the Southern core, we derive a new and independent constraint on the self-interaction cross section of dark matter particles =m
Publications of the Astronomical Society of the Pacific | 2014
Charles A. Beichman; Bjoern Benneke; Heather A. Knutson; Roger Smith; Pierre Olivier Lagage; Courtney D. Dressing; David W. Latham; Jonathan I. Lunine; Stephan M. Birkmann; Pierre Ferruit; Giovanna Giardino; Eliza M.-R. Kempton; Sean J. Carey; Jessica E. Krick; Pieter Deroo; Avi M. Mandell; Michael E. Ressler; Avi Shporer; Mark R. Swain; Gautam Vasisht; George R. Ricker; Jeroen Bouwman; Ian J. M. Crossfield; Tom Greene; Steve B. Howell; Jessie L. Christiansen; David R. Ciardi; Mark Clampin; Matt Greenhouse; A. Sozzetti
This article summarizes a workshop held on March, 2014, on the potential of the James Webb Space Telescope (JWST) to revolutionize our knowledge of the physical properties of exoplanets through transit observations. JWSTs unique combination of high sensitivity and broad wavelength coverage will enable the accurate measurement of transits with high signal-to-noise. Most importantly, JWST spectroscopy will investigate planetary atmospheres to determine atomic and molecular compositions, to probe vertical and horizontal structure, and to follow dynamical evolution, i.e. exoplanet weather. JWST will sample a diverse population of planets of varying masses and densities in a wide variety of environments characterized by a range of host star masses and metallicities, orbital semi-major axes and eccentricities. A broad program of exoplanet science could use a substantial fraction of the overall JWST mission.
Nature | 2016
Brice-Olivier Demory; Michaël Gillon; Julien de Wit; Nikku Madhusudhan; Emeline Bolmont; Kevin Heng; Tiffany Kataria; Nikole K. Lewis; Renyu Hu; Jessica E. Krick; Vlada Stamenković; Björn Benneke; Stephen R. Kane; D. Queloz
Over the past decade, observations of giant exoplanets (Jupiter-size) have provided key insights into their atmospheres, but the properties of lower-mass exoplanets (sub-Neptune) remain largely unconstrained because of the challenges of observing small planets. Numerous efforts to observe the spectra of super-Earths—exoplanets with masses of one to ten times that of Earth—have so far revealed only featureless spectra. Here we report a longitudinal thermal brightness map of the nearby transiting super-Earth 55 Cancri e (refs 4, 5) revealing highly asymmetric dayside thermal emission and a strong day–night temperature contrast. Dedicated space-based monitoring of the planet in the infrared revealed a modulation of the thermal flux as 55 Cancri e revolves around its star in a tidally locked configuration. These observations reveal a hot spot that is located 41 ± 12 degrees east of the substellar point (the point at which incident light from the star is perpendicular to the surface of the planet). From the orbital phase curve, we also constrain the nightside brightness temperature of the planet to 1,380 ± 400 kelvin and the temperature of the warmest hemisphere (centred on the hot spot) to be about 1,300 kelvin hotter (2,700 ± 270 kelvin) at a wavelength of 4.5 micrometres, which indicates inefficient heat redistribution from the dayside to the nightside. Our observations are consistent with either an optically thick atmosphere with heat recirculation confined to the planetary dayside, or a planet devoid of atmosphere with low-viscosity magma flows at the surface.
The Astronomical Journal | 1998
J. R. Webb; Ian Freedman; Emily S. Howard; Feng Ma; Michelle Belfort; Heather Rave; Ken Rumstay; Susan Nicol; Jessica E. Krick; Terry D. Oswalt; Daniel Marshall; Timothy Robishaw
We present BVRI observations of BL Lacertae during its recent outburst. These observations, made during a 3 month period, cover a significant portion of the optical flare. The reduced data are displayed as light curves and broadband spectra. Changes in the spectral index are analyzed, and the results are compared with previous BL Lac observations. We find that the variations are simultaneous in the optical bands, but the higher frequency bands show a higher amplitude of variability. The spectral index is variable during the active period, and there is marginal evidence that the spectrum flattens as the source gets brighter.
The Astronomical Journal | 2016
James G. Ingalls; Jessica E. Krick; Sean J. Carey; John R. Stauffer; Patrick J. Lowrance; Carl J. Grillmair; Derek L. Buzasi; Drake Deming; Hannah Diamond-Lowe; T. Evans; G. Morello; Kevin B. Stevenson; Ian Wong; P. Capak; William Joseph Glaccum; Seppo Laine; Jason A. Surace; Lisa J. Storrie-Lombardi
We examine the repeatability, reliability, and accuracy of differential exoplanet eclipse depth measurements made using the InfraRed Array Camera (IRAC) on the Spitzer Space Telescope during the post-cryogenic mission. We have re-analyzed an existing 4.5 {\mu}m data set, consisting of 10 observations of the XO-3b system during secondary eclipse, using seven different techniques for removing correlated noise. We find that, on average, for a given technique, the eclipse depth estimate is repeatable from epoch to epoch to within 156 parts per million (ppm). Most techniques derive eclipse depths that do not vary by more than a factor 3 of the photon noise limit. All methods but one accurately assess their own errors: for these methods, the individual measurement uncertainties are comparable to the scatter in eclipse depths over the 10 epoch sample. To assess the accuracy of the techniques as well as to clarify the difference between instrumental and other sources of measurement error, we have also analyzed a simulated data set of 10 visits to XO-3b, for which the eclipse depth is known. We find that three of the methods (BLISS mapping, Pixel Level Decorrelation, and Independent Component Analysis) obtain results that are within three times the photon limit of the true eclipse depth. When averaged over the 10 epoch ensemble, 5 out of 7 techniques come within 60 ppm of the true value. Spitzer exoplanet data, if obtained following current best practices and reduced using methods such as those described here, can measure repeatable and accurate single eclipse depths, with close to photon-limited results.
The Astrophysical Journal | 2016
Charles A. Beichman; J. Livingston; M. Werner; Varoujan Gorjian; Jessica E. Krick; Katherine M. Deck; Heather A. Knutson; Ian Wong; Erik A. Petigura; Jessie L. Christiansen; David R. Ciardi; Thomas P. Greene; Joshua E. Schlieder; Mike Line; Ian J. M. Crossfield; Andrew W. Howard; Evan Sinukoff
We have used the Spitzer Space Telescope to observe two transiting planetary systems orbiting low-mass stars discovered in the Kepler K2 mission. The system K2-3 (EPIC 201367065) hosts three planets, while K2-26 (EPIC 202083828) hosts a single planet. Observations of all four objects in these two systems confirm and refine the orbital and physical parameters of the planets. The refined orbital information and more precise planet radii possible with Spitzer will be critical for future observations of these and other K2 targets. For K2-3b we find marginally significant evidence for a transit timing variation between the K2 and Spitzer epochs.
The Astrophysical Journal | 2008
Jessica E. Krick; Jason A. Surace; D. Thompson; M. L. N. Ashby; Joseph L. Hora; Varoujan Gorjian; Lin Yan
Using three newly identified galaxy clusters at z ~ 1 (photometric redshift) we measure the evolution of the galaxies within clusters from high redshift to the present day by studying the growth of the red cluster sequence. The clusters are located in the Spitzer Infrared Array Camera (IRAC)Dark Field, an extremely deep mid-infrared survey near the north ecliptic pole with photometry in 18 total bands from X-ray through far-IR. Two of the candidate clusters are additionally detected as extended emission in matching Chandra data in the survey area, allowing us to measure their masses to be M_(500) = (6.2 ± 1.0) x 10^(13) and (3.6 ± 1.1) x 10^(13)M_☉. For all three clusters we create a composite color-magnitude diagram in rest-frame B - K using our deep HST and Spitzer imaging. By comparing the fraction of low-luminosity member galaxies on the composite red sequence with the corresponding population in local clusters at z = 0.1 taken from COSMOS, we examine the effect of a galaxy’s mass on its evolution.We find a deficit of faint galaxies on the red sequence in our z ~ 1 clusters, which implies that more massive galaxies have evolved in clusters faster than less massive galaxies, and that the less massive galaxies are still forming stars in clusters such that they have not yet settled onto the red sequence.
The Astrophysical Journal | 2012
Jessica E. Krick; William Joseph Glaccum; Sean J. Carey; Patrick J. Lowrance; Jason A. Surace; James G. Ingalls; Joseph L. Hora; William T. Reach
The dominant non-instrumental background source for space–based infrared observatories is the zodiacal light (ZL). We present Spitzer Infrared Array Camera (IRAC) measurements of the ZL at 3.6, 4.5, 5.8, and 8.0 μm, taken as part of the instrument calibrations. We measure the changing surface brightness levels in approximately weekly IRAC observations near the north ecliptic pole over the period of roughly 8.5 years. This long time baseline is crucial for measuring the annual sinusoidal variation in the signal levels due to the tilt of the dust disk with respect to the ecliptic, which is the true signal of the ZL. This is compared to both Cosmic Background Explorer Diffuse Infrared Background Experiment data and a ZL model based thereon. Our data show a few percent discrepancy from the Kelsall et al.(1998) model including a potential warping of the interplanetary dust disk and a previously detected overdensity in the dust cloud directly behind the Earth in its orbit. Accurate knowledge of the ZL is important for both extragalactic and Galactic astronomy including measurements of the cosmic infrared background, absolute measures of extended sources, and comparison to extrasolar interplanetary dust models. IRAC data can be used to further inform and test future ZL models.
The Astrophysical Journal | 2017
Björn Benneke; M. Werner; Erik A. Petigura; Heather A. Knutson; Courtney D. Dressing; Ian J. M. Crossfield; Joshua E. Schlieder; J. Livingston; Charles A. Beichman; Jessie L. Christiansen; Jessica E. Krick; Varoujan Gorjian; Andrew W. Howard; Evan Sinukoff; David R. Ciardi; R. L. Akeson
The recent detections of two transit events attributed to the super-Earth candidate K2-18b have provided the unprecedented prospect of spectroscopically studying a habitable-zone planet outside the solar system. Orbiting a nearby M2.5 dwarf and receiving virtually the same stellar insolation as Earth, K2-18b would be a prime candidate for the first detailed atmospheric characterization of a habitable-zone exoplanet using the Hubble Space Telescope (HST)and James Webb Space Telescope (JWST). Here, we report the detection of a third transit of K2-18b near the predicted transit time using the Spitzer Space Telescope. The Spitzer detection demonstrates the periodic nature of the two transit events discovered by K2, confirming that K2-18 is indeed orbited by a super-Earth in a 33 day orbit, ruling out the alternative scenario of two similarly sized, long-period planets transiting only once within the 75 day Kepler Space Telescope (K2) observation. We also find, however, that the transit event detected by Spitzer occurred 1.85 hr (
The Astrophysical Journal | 2009
Jessica E. Krick; Jason A. Surace; D. Thompson; M. L. N. Ashby; Joseph L. Hora; Varoujan Gorjian; Lin Yan
7\sigma