Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessica E. Light is active.

Publication


Featured researches published by Jessica E. Light.


The Journal of Infectious Diseases | 2008

Molecular Identification of Lice from Pre-Columbian Mummies

Didier Raoult; David L. Reed; Katharina Dittmar; Jeremy J. Kirchman; Jean-Marc Rolain; Sonia Guillen; Jessica E. Light

BACKGROUND Three distinctly different lineages of head and body lice are known to parasitize humans. One lineage includes head and body lice and is currently worldwide in distribution (type A). The other 2 (types B and C) include only head lice and are geographically restricted. It was hypothesized that head louse phylotypes were exchanged only recently, after European exploration and colonization (after Columbus). METHODS To determine which louse type or types were found in the Americas before European colonization, we used polymerase chain reaction in 2 laboratories to amplify DNA from 2 genes (Cytb and Cox1) belonging to 1000-year-old lice collected from Peruvian mummies. RESULTS Only the worldwide type (type A) was found. Therefore, this phylotype was worldwide before European colonization, as type A lice were common in Europe, Africa, and Asia. CONCLUSIONS The findings of this study show that several phylotypes of head lice have coexisted for centuries in humans and support the claim that type A lice were present in the Americas before the time of Columbus.


Journal of Mammalogy | 2007

BASAL CLADES AND MOLECULAR SYSTEMATICS OF HETEROMYID RODENTS

John C. Hafner; Jessica E. Light; David J. Hafner; Mark S. Hafner; Emily Reddington; Duke S. Rogers; Brett R. Riddle

Abstract The New World rodent family Heteromyidae shows a marvelous array of ecomorphological types, from bipedal, arid-adapted forms to scansorial, tropical-adapted forms. Although recent studies have resolved most of the phylogenetic relationships among heteromyids at the shallower taxonomic levels, fundamental questions at the deeper taxonomic levels remain unresolved. This study relies on DNA sequence information from 3 relatively slowly evolving mitochondrial genes, cytochrome c oxidase subunit I, 12S, and 16S, to examine basal patterns of phylogenesis in the Heteromyidae. Because slowly evolving mitochondrial genes evolve and coalesce more rapidly than most nuclear genes, they may be superior to nuclear genes for resolving short, basal branches. Our molecular data (2,381 base pairs for the 3-gene data set) affirm the monophyly of the family and resolve the major basal clades in the family. Alternative phylogenetic hypotheses of subfamilial relationships are examined statistically and the Perognathinae and Heteromyinae are found to represent sister clades relative to the Dipodomyinae. The 3 traditional subfamilial groupings are supported; the controversial placement of Microdipodops as a sister clade to Dipodomys in the Dipodomyinae is affirmed, Perognathus and Chaetodipus are distinct sister clades within the Perognathinae, and species of Liomys and Heteromys form the resolved clade Heteromyinae. However, Liomys is found to be paraphyletic relative to Heteromys and, given that this finding corroborates earlier studies, we present a formal taxonomy of Heteromys wherein we place Liomys in synonymy. Semiparametric and parametric methods are used to estimate divergence times from our molecular data and a chronogram of the Heteromyidae, calibrated by the oldest known fossils of Dipodomys and Perognathus, is presented. Our time estimates reveal subfamilial differentiation in the early Miocene (22.3–21.8 million years ago) and pose testable times of divergence for the basal heteromyid nodes. With the basal heteromyid clades resolved and cladogenic events positioned in a time framework, we review the major geological and paleoecological events of the Oligocene and Miocene associated with the early historical biogeography of the family.


Molecular Phylogenetics and Evolution | 2008

What's in a name: the taxonomic status of human head and body lice.

Jessica E. Light; Melissa A. Toups; David L. Reed

Human head lice (Anoplura: Pediculidae: Pediculus) are pandemic, parasitizing countless school children worldwide due to the evolution of insecticide resistance, and human body (clothing) lice are responsible for the deaths of millions as a result of vectoring several deadly bacterial pathogens. Despite the obvious impact these lice have had on their human hosts, it is unclear whether head and body lice represent two morphological forms of a single species or two distinct species. To assess the taxonomic status of head and body lice, we provide a synthesis of publicly available molecular data in GenBank, and we compare phylogenetic and population genetic methods using the most diverse geographic and molecular sampling presently available. Our analyses find reticulated networks, gene flow, and a lack of reciprocal monophyly, all of which indicate that head and body lice do not represent genetically distinct evolutionary units. Based on these findings, as well as inconsistencies of morphological, behavioral, and ecological variability between head and body lice, we contend that no known species concept would recognize these louse morphotypes as separate species. We recommend recognizing head and body lice as morphotypes of a single species, Pediculus humanus, until compelling new data and analyses (preferably analyses of fast evolving nuclear markers in a coalescent framework) indicate otherwise.


Molecular Biology and Evolution | 2011

Origin of Clothing Lice Indicates Early Clothing Use by Anatomically Modern Humans in Africa

Melissa A. Toups; Andrew Kitchen; Jessica E. Light; David L. Reed

Clothing use is an important modern behavior that contributed to the successful expansion of humans into higher latitudes and cold climates. Previous research suggests that clothing use originated anywhere between 40,000 and 3 Ma, though there is little direct archaeological, fossil, or genetic evidence to support more specific estimates. Since clothing lice evolved from head louse ancestors once humans adopted clothing, dating the emergence of clothing lice may provide more specific estimates of the origin of clothing use. Here, we use a Bayesian coalescent modeling approach to estimate that clothing lice diverged from head louse ancestors at least by 83,000 and possibly as early as 170,000 years ago. Our analysis suggests that the use of clothing likely originated with anatomically modern humans in Africa and reinforces a broad trend of modern human developments in Africa during the Middle to Late Pleistocene.


BMC Evolutionary Biology | 2010

Evolutionary history of mammalian sucking lice (Phthiraptera: Anoplura)

Jessica E. Light; Vincent S. Smith; Julie M. Allen; Lance A. Durden; David L. Reed

BackgroundSucking lice (Phthiraptera: Anoplura) are obligate, permanent ectoparasites of eutherian mammals, parasitizing members of 12 of the 29 recognized mammalian orders and approximately 20% of all mammalian species. These host specific, blood-sucking insects are morphologically adapted for life on mammals: they are wingless, dorso-ventrally flattened, possess tibio-tarsal claws for clinging to host hair, and have piercing mouthparts for feeding. Although there are more than 540 described species of Anoplura and despite the potential economical and medical implications of sucking louse infestations, this study represents the first attempt to examine higher-level anopluran relationships using molecular data. In this study, we use molecular data to reconstruct the evolutionary history of 65 sucking louse taxa with phylogenetic analyses and compare the results to findings based on morphological data. We also estimate divergence times among anopluran taxa and compare our results to host (mammal) relationships.ResultsThis study represents the first phylogenetic hypothesis of sucking louse relationships using molecular data and we find significant conflict between phylogenies constructed using molecular and morphological data. We also find that multiple families and genera of sucking lice are not monophyletic and that extensive taxonomic revision will be necessary for this group. Based on our divergence dating analyses, sucking lice diversified in the late Cretaceous, approximately 77 Ma, and soon after the Cretaceous-Paleogene boundary (ca. 65 Ma) these lice proliferated rapidly to parasitize multiple mammalian orders and families.ConclusionsThe diversification time of sucking lice approximately 77 Ma is in agreement with mammalian evolutionary history: all modern mammal orders are hypothesized to have diverged by 75 Ma thus providing suitable habitat for the colonization and radiation of sucking lice. Despite the concordant timing of diversification events early in the association between anoplurans and mammals, there is substantial conflict between the host and parasite phylogenies. This conflict is likely the result of a complex history of host switching and extinction events that occurred throughout the evolutionary association between sucking lice and their mammalian hosts. It is unlikely that there are any ectoparasite groups (including lice) that tracked the early and rapid radiation of eutherian mammals.


Systematic Biology | 2008

Codivergence in heteromyid rodents (Rodentia: heteromyidae) and their sucking lice of the genus Fahrenholzia (Phthiraptera: anoplura).

Jessica E. Light; Mark S. Hafner

Although most studies of codivergence rely primarily on topological comparisons of host and parasite phylogenies, temporal assessments are necessary to determine if divergence events in host and parasite trees occurred contemporaneously. A combination of cophylogenetic analyses and comparisons of branch lengths are used in this study to understand the host-parasite association between heteromyid rodents (Rodentia: Heteromyidae) and their sucking lice of the genus Fahrenholzia (Phthiraptera: Anoplura). Cophylogenetic comparisons based on nucleotide substitutions in the mitochondrial COI gene reveal a significant, but not perfect, pattern of cophylogeny between heteromyids and their sucking lice. Regression analyses show a significant functional relationship between the lengths of analogous branches in the host and parasite trees, indicating that divergence events in hosts and parasites were approximately contemporaneous. Thus, the topological similarity observed between heteromyids and their lice is the result of codivergence. These analyses also show that the COI gene in lice is evolving two to three times faster than the same gene in their hosts (similar to the results of studies of other lice and their vertebrate hosts) and that divergence events in lice occurred shortly after host divergence. We recommend that future studies of codivergence include temporal comparisons and, when possible, use the same molecular marker(s) in hosts and parasites to achieve the greatest insight into the history of the host-parasite relationship.


Molecular Phylogenetics and Evolution | 2009

Multigene analysis of phylogenetic relationships and divergence times of primate sucking lice (Phthiraptera: Anoplura).

Jessica E. Light; David L. Reed

Cospeciation between hosts and parasites offers a unique opportunity to use information from parasites to infer events in host evolutionary history. Although lice (Insecta: Phthiraptera) are known to cospeciate with their hosts and have frequently served as important markers to infer host evolutionary history, most molecular studies are based on only one or two markers. Resulting phylogenies may, therefore, represent gene histories (rather than species histories), and analyses of multiple molecular markers are needed to increase confidence in the results of phylogenetic analyses. Herein, we phylogenetically examine nine molecular markers in primate sucking lice (Phthiraptera: Anoplura) and we use these markers to estimate divergence times among louse lineages. Individual and combined analyses of these nine markers are, for the most part, congruent, supporting relationships hypothesized in previous studies. Only one marker, the nuclear protein-coding gene Histone 3, has a significantly different tree topology compared to the other markers. The disparate evolutionary history of this marker, however, has no significant effect on topology or nodal support in the combined phylogenetic analyses. Therefore, phylogenetic results from the combined data set likely represent a solid hypothesis of species relationships. Additionally, we find that simultaneous use of multiple markers and calibration points provides the most reliable estimates of louse divergence times, in agreement with previous studies estimating divergences among species. Estimates of phylogenies and divergence times also allow us to verify the results of [Reed, D.L., Light, J.E., Allen, J.M., Kirchman, J.J., 2007. Pair of lice lost or parasites regained: the evolutionary history of anthropoid primate lice. BMC Biol. 5, 7.]; there was probable contact between gorilla and archaic hominids roughly 3 Ma resulting in a host switch of Pthirus lice from gorillas to archaic hominids. Thus, these results provide further evidence that data from cospeciating organisms can yield important information about the evolutionary history of their hosts.


Biology Letters | 2011

Multiple lineages of lice pass through the K-Pg boundary

Vincent S. Smith; Tom Ford; Kevin P. Johnson; Paul Johnson; Kazunori Yoshizawa; Jessica E. Light

For modern lineages of birds and mammals, few fossils have been found that predate the Cretaceous–Palaeogene (K–Pg) boundary. However, molecular studies using fossil calibrations have shown that many of these lineages existed at that time. Both birds and mammals are parasitized by obligate ectoparasitic lice (Insecta: Phthiraptera), which have shared a long coevolutionary history with their hosts. Evaluating whether many lineages of lice passed through the K–Pg boundary would provide insight into the radiation of their hosts. Using molecular dating techniques, we demonstrate that the major louse suborders began to radiate before the K–Pg boundary. These data lend support to a Cretaceous diversification of many modern bird and mammal lineages.


Conservation Genetics Resources | 2010

Isolation and characterization of 17 polymorphic microsatellite loci in the kangaroo mouse, genus Microdipodops (Rodentia: Heteromyidae)

Stacey L. Lance; Jessica E. Light; Kenneth L. Jones; Cris Hagen; John C. Hafner

We isolated and characterized 17 microsatellite loci from kangaroo mice, Microdipodops megacephalus and M. pallidus. Loci were screened in 24 individuals from 21 general localities across their distributional range in the Great Basin Desert. In total, the number of alleles per locus ranged from 4 to 16, observed heterozygosity ranged from 0.333 to 1, and the probability of identity values ranged from 0.013 to 1. These loci provide new tools for examining the biogeographic history and population dynamics of Microdipodops in the context of molecular ecology.


PLOS ONE | 2009

Mutational meltdown in primary endosymbionts: selection limits Muller's ratchet.

Julie M. Allen; Jessica E. Light; M. Alejandra Perotti; Henk R. Braig; David L. Reed

Background Primary bacterial endosymbionts of insects (p-endosymbionts) are thought to be undergoing the process of Mullers ratchet where they accrue slightly deleterious mutations due to genetic drift in small populations with negligible recombination rates. If this process were to go unchecked over time, theory predicts mutational meltdown and eventual extinction. Although genome degradation is common among p-endosymbionts, we do not observe widespread p-endosymbiont extinction, suggesting that Mullers ratchet may be slowed or even stopped over time. For example, selection may act to slow the effects of Mullers ratchet by removing slightly deleterious mutations before they go to fixation thereby causing a decrease in nucleotide substitutions rates in older p-endosymbiont lineages. Methodology/Principal Findings To determine whether selection is slowing the effects of Mullers ratchet, we determined the age of the Candidatus Riesia/sucking louse assemblage and analyzed the nucleotide substitution rates of several p-endosymbiont lineages that differ in the length of time that they have been associated with their insect hosts. We find that Riesia is the youngest p-endosymbiont known to date, and has been associated with its louse hosts for only 13–25 My. Further, it is the fastest evolving p-endosymbiont with substitution rates of 19–34% per 50 My. When comparing Riesia to other insect p-endosymbionts, we find that nucleotide substitution rates decrease dramatically as the age of endosymbiosis increases. Conclusions/Significance A decrease in nucleotide substitution rates over time suggests that selection may be limiting the effects of Mullers ratchet by removing individuals with the highest mutational loads and decreasing the rate at which new mutations become fixed. This countering effect of selection could slow the overall rate of endosymbiont extinction.

Collaboration


Dive into the Jessica E. Light's collaboration.

Top Co-Authors

Avatar

David L. Reed

Florida Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Mark S. Hafner

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

David J. Hafner

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James W. Demastes

University of Northern Iowa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lance A. Durden

Georgia Southern University

View shared research outputs
Researchain Logo
Decentralizing Knowledge