Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessica Frankum is active.

Publication


Featured researches published by Jessica Frankum.


Nature Genetics | 2011

Germline mutations in RAD51D confer susceptibility to ovarian cancer

Chey Loveday; Clare Turnbull; Emma Ramsay; Deborah Hughes; Elise Ruark; Jessica Frankum; Georgina Bowden; Bolot Kalmyrzaev; Margaret Warren-Perry; Katie Snape; Julian Adlard; Julian Barwell; Jonathan Berg; Angela F. Brady; Carole Brewer; G Brice; Cyril Chapman; Jackie Cook; Rosemarie Davidson; Alan Donaldson; Fiona Douglas; Lynn Greenhalgh; Alex Henderson; Louise Izatt; Ajith Kumar; Fiona Lalloo; Zosia Miedzybrodzka; Patrick J. Morrison; Joan Paterson; Mary Porteous

Recently, RAD51C mutations were identified in families with breast and ovarian cancer. This observation prompted us to investigate the role of RAD51D in cancer susceptibility. We identified eight inactivating RAD51D mutations in unrelated individuals from 911 breast-ovarian cancer families compared with one inactivating mutation identified in 1,060 controls (P = 0.01). The association found here was principally with ovarian cancer, with three mutations identified in the 59 pedigrees with three or more individuals with ovarian cancer (P = 0.0005). The relative risk of ovarian cancer for RAD51D mutation carriers was estimated to be 6.30 (95% CI 2.86–13.85, P = 4.8 × 10−6). By contrast, we estimated the relative risk of breast cancer to be 1.32 (95% CI 0.59–2.96, P = 0.50). These data indicate that RAD51D mutation testing may have clinical utility in individuals with ovarian cancer and their families. Moreover, we show that cells deficient in RAD51D are sensitive to treatment with a PARP inhibitor, suggesting a possible therapeutic approach for cancers arising in RAD51D mutation carriers.


Cancer Discovery | 2011

Functional viability profiles of breast cancer.

Rachel Brough; Jessica Frankum; David Sims; Alan Mackay; Ana M. Mendes-Pereira; Ilirjana Bajrami; Sara Costa-Cabral; Rumana Rafiq; Amar Ahmad; Maria Antonietta Cerone; Rachael Natrajan; Rachel Sharpe; Kai-Keen Shiu; Daniel Wetterskog; Konstantine J. Dedes; Maryou B. Lambros; Teeara Rawjee; Spiros Linardopoulos; Jorge S. Reis-Filho; Nicholas C. Turner; Christopher J. Lord; Alan Ashworth

UNLABELLED The design of targeted therapeutic strategies for cancer has largely been driven by the identification of tumor-specific genetic changes. However, the large number of genetic alterations present in tumor cells means that it is difficult to discriminate between genes that are critical for maintaining the disease state and those that are merely coincidental. Even when critical genes can be identified, directly targeting these is often challenging, meaning that alternative strategies such as exploiting synthetic lethality may be beneficial. To address these issues, we have carried out a functional genetic screen in >30 commonly used models of breast cancer to identify genes critical to the growth of specific breast cancer subtypes. In particular, we describe potential new therapeutic targets for PTEN-mutated cancers and for estrogen receptor-positive breast cancers. We also show that large-scale functional profiling allows the classification of breast cancers into subgroups distinct from established subtypes. SIGNIFICANCE Despite the wealth of molecular profiling data that describe breast tumors and breast tumor cell models, our understanding of the fundamental genetic dependencies in this disease is relatively poor. Using high-throughput RNA interference screening of a series of pharmacologically tractable genes, we have generated comprehensive functional viability profiles for a wide panel of commonly used breast tumor cell models. Analysis of these profiles identifies a series of novel genetic dependencies, including that of PTEN-null breast tumor cells upon mitotic checkpoint kinases, and provides a framework upon which additional dependencies and candidate therapeutic targets may be identified.


Cancer Research | 2014

Genome-wide Profiling of Genetic Synthetic Lethality Identifies CDK12 as a Novel Determinant of PARP1/2 Inhibitor Sensitivity

I. Bajrami; Jessica Frankum; Asha Konde; Rowan Miller; Farah L. Rehman; Rachel Brough; James Campbell; David Sims; Rumana Rafiq; Sean Hooper; Lina Chen; Iwanka Kozarewa; Ioannis Assiotis; Kerry Fenwick; Rachael Natrajan; Christopher J. Lord; Alan Ashworth

Small-molecule inhibitors of PARP1/2, such as olaparib, have been proposed to serve as a synthetic lethal therapy for cancers that harbor BRCA1 or BRCA2 mutations. Indeed, in clinical trials, PARP1/2 inhibitors elicit sustained antitumor responses in patients with germline BRCA gene mutations. In hypothesizing that additional genetic determinants might direct use of these drugs, we conducted a genome-wide synthetic lethal screen for candidate olaparib sensitivity genes. In support of this hypothesis, the set of identified genes included known determinants of olaparib sensitivity, such as BRCA1, RAD51, and Fanconis anemia susceptibility genes. In addition, the set included genes implicated in established networks of DNA repair, DNA cohesion, and chromatin remodeling, none of which were known previously to confer sensitivity to PARP1/2 inhibition. Notably, integration of the list of candidate sensitivity genes with data from tumor DNA sequencing studies identified CDK12 deficiency as a clinically relevant biomarker of PARP1/2 inhibitor sensitivity. In models of high-grade serous ovarian cancer (HGS-OVCa), CDK12 attenuation was sufficient to confer sensitivity to PARP1/2 inhibition, suppression of DNA repair via homologous recombination, and reduced expression of BRCA1. As one of only nine genes known to be significantly mutated in HGS-OVCa, CDK12 has properties that should confirm interest in its use as a biomarker, particularly in ongoing clinical trials of PARP1/2 inhibitors and other agents that trigger replication fork arrest.


Genome Biology | 2011

High-throughput RNA interference screening using pooled shRNA libraries and next generation sequencing

David Sims; Ana M. Mendes-Pereira; Jessica Frankum; Darren J. Burgess; Maria-Antonietta Cerone; Cristina Lombardelli; Costas Mitsopoulos; Jarle Hakas; Nirupa Murugaesu; Clare M. Isacke; Kerry Fenwick; Ioannis Assiotis; Iwanka Kozarewa; Marketa Zvelebil; Alan Ashworth; Christopher J. Lord

RNA interference (RNAi) screening is a state-of-the-art technology that enables the dissection of biological processes and disease-related phenotypes. The commercial availability of genome-wide, short hairpin RNA (shRNA) libraries has fueled interest in this area but the generation and analysis of these complex data remain a challenge. Here, we describe complete experimental protocols and novel open source computational methodologies, shALIGN and shRNAseq, that allow RNAi screens to be rapidly deconvoluted using next generation sequencing. Our computational pipeline offers efficient screen analysis and the flexibility and scalability to quickly incorporate future developments in shRNA library technology.


Current Opinion in Genetics & Development | 2011

Searching for synthetic lethality in cancer.

Rachel Brough; Jessica Frankum; Sara Costa-Cabral; Christopher J. Lord; Alan Ashworth

The incentive to develop personalised therapy for cancer treatment is driven by the premise that it will increase therapeutic efficacy and reduce toxicity. Understanding the underlying cellular and molecular basis of the disease has been extremely important in the design of these novel therapies; however, identifying new drug targets for personalised therapies remains problematic. This review describes how the biological concept of synthetic lethality has been successfully implemented to identify new therapeutic approaches and targets in models from yeast through to human cells. We also discuss how recent technical advances combined with an increased understanding of the complexity of cellular networks may facilitate therapeutic advances in the future.


The Journal of Pathology | 2014

Characterization of the genomic features and expressed fusion genes in micropapillary carcinomas of the breast

Rachael Natrajan; Paul M. Wilkerson; Caterina Marchiò; Salvatore Piscuoglio; Charlotte K.Y. Ng; Patty Wai; Maryou B. Lambros; Eleftherios P. Samartzis; Konstantin J. Dedes; Jessica Frankum; Ilirjana Bajrami; Alicja Kopec; Alan Mackay; Roger A'Hern; Kerry Fenwick; Iwanka Kozarewa; Jarle Hakas; Costas Mitsopoulos; David Hardisson; Christopher J. Lord; Chandan Kumar-Sinha; Alan Ashworth; Britta Weigelt; Anna Sapino; Arul M. Chinnaiyan; Christopher A. Maher; Jorge S. Reis-Filho

Micropapillary carcinoma (MPC) is a rare histological special type of breast cancer, characterized by an aggressive clinical behaviour and a pattern of copy number aberrations (CNAs) distinct from that of grade‐ and oestrogen receptor (ER)‐matched invasive carcinomas of no special type (IC‐NSTs). The aims of this study were to determine whether MPCs are underpinned by a recurrent fusion gene(s) or mutations in 273 genes recurrently mutated in breast cancer. Sixteen MPCs were subjected to microarray‐based comparative genomic hybridization (aCGH) analysis and Sequenom OncoCarta mutation analysis. Eight and five MPCs were subjected to targeted capture and RNA sequencing, respectively. aCGH analysis confirmed our previous observations about the repertoire of CNAs of MPCs. Sequencing analysis revealed a spectrum of mutations similar to those of luminal B IC‐NSTs, and recurrent mutations affecting mitogen‐activated protein kinase family genes and NBPF10. RNA‐sequencing analysis identified 17 high‐confidence fusion genes, eight of which were validated and two of which were in‐frame. No recurrent fusions were identified in an independent series of MPCs and IC‐NSTs. Forced expression of in‐frame fusion genes (SLC2A1–FAF1 and BCAS4–AURKA) resulted in increased viability of breast cancer cells. In addition, genomic disruption of CDK12 caused by out‐of‐frame rearrangements was found in one MPC and in 13% of HER2‐positive breast cancers, identified through a re‐analysis of publicly available massively parallel sequencing data. In vitro analyses revealed that CDK12 gene disruption results in sensitivity to PARP inhibition, and forced expression of wild‐type CDK12 in a CDK12‐null cell line model resulted in relative resistance to PARP inhibition. Our findings demonstrate that MPCs are neither defined by highly recurrent mutations in the 273 genes tested, nor underpinned by a recurrent fusion gene. Although seemingly private genetic events, some of the fusion transcripts found in MPCs may play a role in maintenance of a malignant phenotype and potentially offer therapeutic opportunities.


Embo Molecular Medicine | 2012

Synthetic lethality of PARP and NAMPT inhibition in triple-negative breast cancer cells

Ilirjana Bajrami; Asha Kigozi; Antoinette van Weverwijk; Rachel Brough; Jessica Frankum; Christopher J. Lord; Alan Ashworth

PARP inhibitors have been proposed as a potential targeted therapy for patients with triple‐negative (ER‐, PR‐, HER2‐negative) breast cancers. However, it is as yet unclear as to whether single agent or combination therapy using PARP inhibitors would be most beneficial. To better understand the mechanisms that determine the response to PARP inhibitors, we investigated whether enzymes involved in metabolism of the PARP substrate, β‐NAD+, might alter the response to a clinical PARP inhibitor. Using an olaparib sensitization screen in a triple‐negative (TN) breast cancer model, we identified nicotinamide phosphoribosyltransferase (NAMPT) as a non‐redundant modifier of olaparib response. NAMPT is a rate‐limiting enzyme involved in the generation of the PARP substrate β‐NAD+ and the suppression of β‐NAD+ levels by NAMPT inhibition most likely explains these observations. Importantly, the combination of a NAMPT small molecule inhibitor, FK866, with olaparib inhibited TN breast tumour growth in vivo to a greater extent than either single agent alone suggesting that assessing NAMPT/PARP inhibitor combinations for the treatment of TN breast cancer may be warranted.


BMC Genomics | 2012

Molecular characterisation of cell line models for triple-negative breast cancers.

Anita Grigoriadis; Alan Mackay; Elodie Noel; Pei Jun Wu; Rachael Natrajan; Jessica Frankum; Jorge S. Reis-Filho; Andrew Tutt

BackgroundTriple-negative breast cancers (BC) represent a heterogeneous subtype of BCs, generally associated with an aggressive clinical course and where targeted therapies are currently limited. Target validation studies for all BC subtypes have largely employed established BC cell lines, which have proven to be effective tools for drug discovery.ResultsGiven the lines of evidence suggesting that BC cell lines are effective tools for drug discovery, we assessed the similarities between triple-negative BCs and cell lines, to identify in vitro representatives, modelling the diversity within this BC subtype. 25 BC cell lines, enriched for those lacking ER, PR and HER2 expression, were subjected to transcriptomic, genomic and epigenomic profiling analyses and comparisons were made to existing knowledge of corresponding perturbations in triple-negative BCs. Transcriptional analysis segregated ER-negative BC cell lines into three groups, displaying distinctive abundances for genes involved in epithelial-mesenchymal transition, apocrine and high-grade carcinomas. DNA copy number aberrations of triple-negative BCs were well represented in cell lines and genes with coordinately altered gene expression showed similar patterns in tumours and cell lines. Methylation events in triple-negative BCs were mostly retained in epigenomes of cell lines. Combined methylation and gene expression analyses revealed a subset of genes characteristic of the Claudin-low BC subtype, exhibiting epigenetic-regulated gene expression in BC cell lines and tumours, suggesting that methylation patterns are likely to underpin subtype-specificity.ConclusionHere, we provide a comprehensive analysis of triple-negative BC features on several molecular levels in BC cell lines, thereby creating an in-depth resource to access the suitability of individual lines as experimental models for studying BC tumour biology, biomarkers and possible therapeutic targets in the context of preclinical target validation.


Cell Reports | 2016

Large-Scale Profiling of Kinase Dependencies in Cancer Cell Lines

James J. Campbell; Colm J. Ryan; Rachel Brough; Ilirjana Bajrami; Helen N. Pemberton; Irene Y. Chong; Sara Costa-Cabral; Jessica Frankum; Aditi Gulati; Harriet Holme; Rowan Miller; Sophie Postel-Vinay; Rumana Rafiq; Wenbin Wei; Chris T. Williamson; David A. Quigley; Joe E. Tym; Bissan Al-Lazikani; Tim Fenton; Rachael Natrajan; Sandra J. Strauss; Alan Ashworth; Christopher J. Lord

Summary One approach to identifying cancer-specific vulnerabilities and therapeutic targets is to profile genetic dependencies in cancer cell lines. Here, we describe data from a series of siRNA screens that identify the kinase genetic dependencies in 117 cancer cell lines from ten cancer types. By integrating the siRNA screen data with molecular profiling data, including exome sequencing data, we show how vulnerabilities/genetic dependencies that are associated with mutations in specific cancer driver genes can be identified. By integrating additional data sets into this analysis, including protein-protein interaction data, we also demonstrate that the genetic dependencies associated with many cancer driver genes form dense connections on functional interaction networks. We demonstrate the utility of this resource by using it to predict the drug sensitivity of genetically or histologically defined subsets of tumor cell lines, including an increased sensitivity of osteosarcoma cell lines to FGFR inhibitors and SMAD4 mutant tumor cells to mitotic inhibitors.


Stem Cells | 2012

Targeting p90 Ribosomal S6 Kinase Eliminates Tumor-Initiating Cells by Inactivating Y-Box Binding Protein-1 in Triple-Negative Breast Cancers†‡§

Anna L. Stratford; Kristen Reipas; Kaiji Hu; Abbas Fotovati; Rachel Brough; Jessica Frankum; Mandeep Takhar; Peter H. Watson; Alan Ashworth; Christopher J. Lord; Annette Lasham; Cristin G. Print; Sandra E. Dunn

Y‐box binding protein‐1 (YB‐1) is the first reported oncogenic transcription factor to induce the tumor‐initiating cell (TIC) surface marker CD44 in triple‐negative breast cancer (TNBC) cells. In order for CD44 to be induced, YB‐1 must be phosphorylated at S102 by p90 ribosomal S6 kinase (RSK). We therefore questioned whether RSK might be a tractable molecular target to eliminate TICs. In support of this idea, injection of MDA‐MB‐231 cells expressing Flag‐YB‐1 into mice increased tumor growth as well as enhanced CD44 expression. Despite enrichment for TICs, these cells were sensitive to RSK inhibition when treated ex vivo with BI‐D1870. Targeting RSK2 with small interfering RNA (siRNA) or small molecule RSK kinase inhibitors (SL0101 and BI‐D1870) blocked TNBC monolayer cell growth by ∼100%. In a diverse panel of breast tumor cell line models RSK2 siRNA predominantly targeted models of TNBC. RSK2 inhibition decreased CD44 promoter activity, CD44 mRNA, protein expression, and mammosphere formation. CD44+ cells had higher P‐RSKS221/227, P‐YB‐1S102, and mitotic activity relative to CD44− cells. Importantly, RSK2 inhibition specifically suppressed the growth of TICs and triggered cell death. Moreover, silencing RSK2 delayed tumor initiation in mice. In patients, RSK2 mRNA was associated with poor disease‐free survival in a cohort of 244 women with breast cancer that had not received adjuvant treatment, and its expression was highest in the basal‐like breast cancer subtype. Taking this further, we report that P‐RSKS221/227 is present in primary TNBCs and correlates with P‐YB‐1S102 as well as CD44. In conclusion, RSK2 inhibition provides a novel therapeutic avenue for TNBC and holds the promise of eliminating TICs. STEM CELLS2012;30:1338–1348

Collaboration


Dive into the Jessica Frankum's collaboration.

Top Co-Authors

Avatar

Christopher J. Lord

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Alan Ashworth

University of California

View shared research outputs
Top Co-Authors

Avatar

Rachel Brough

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Stephen J. Pettitt

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Helen N. Pemberton

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Rachael Natrajan

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Rumana Rafiq

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Ilirjana Bajrami

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Aditi Gulati

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Malini Menon

Institute of Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge