Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessica J. Connelly is active.

Publication


Featured researches published by Jessica J. Connelly.


BMC Medicine | 2009

Genomic and epigenetic evidence for oxytocin receptor deficiency in autism

Simon G. Gregory; Jessica J. Connelly; Aaron J. Towers; Jessica Johnson; Dhani Biscocho; Christina A. Markunas; Carla Lintas; Ruth K. Abramson; Harry H. Wright; Peter Ellis; Cordelia Langford; Gordon Worley; G Robert Delong; Susan K. Murphy; Michael L. Cuccaro; Antonello Persico; Margaret A. Pericak-Vance

BackgroundAutism comprises a spectrum of behavioral and cognitive disturbances of childhood development and is known to be highly heritable. Although numerous approaches have been used to identify genes implicated in the development of autism, less than 10% of autism cases have been attributed to single gene disorders.MethodsWe describe the use of high-resolution genome-wide tilepath microarrays and comparative genomic hybridization to identify copy number variants within 119 probands from multiplex autism families. We next carried out DNA methylation analysis by bisulfite sequencing in a proband and his family, expanding this analysis to methylation analysis of peripheral blood and temporal cortex DNA of autism cases and matched controls from independent datasets. We also assessed oxytocin receptor (OXTR) gene expression within the temporal cortex tissue by quantitative real-time polymerase chain reaction (PCR).ResultsOur analysis revealed a genomic deletion containing the oxytocin receptor gene, OXTR (MIM accession no.: 167055), previously implicated in autism, was present in an autism proband and his mother who exhibits symptoms of obsessive-compulsive disorder. The probands affected sibling did not harbor this deletion but instead may exhibit epigenetic misregulation of this gene through aberrant gene silencing by DNA methylation. Further DNA methylation analysis of the CpG island known to regulate OXTR expression identified several CpG dinucleotides that show independent statistically significant increases in the DNA methylation status in the peripheral blood cells and temporal cortex in independent datasets of individuals with autism as compared to control samples. Associated with the increase in methylation of these CpG dinucleotides is our finding that OXTR mRNA showed decreased expression in the temporal cortex tissue of autism cases matched for age and sex compared to controls.ConclusionTogether, these data provide further evidence for the role of OXTR and the oxytocin signaling pathway in the etiology of autism and, for the first time, implicate the epigenetic regulation of OXTR in the development of the disorder.See the related commentary by Gurrieri and Neri: http://www.biomedcentral.com/1741-7015/7/63


Endocrinology | 2012

Gestational exposure to bisphenol a produces transgenerational changes in behaviors and gene expression.

Jennifer T. Wolstenholme; Michelle Edwards; Savera J. Shetty; Jessica D. Gatewood; Julia A. Taylor; Emilie F. Rissman; Jessica J. Connelly

Bisphenol A (BPA) is a plasticizer and an endocrine-disrupting chemical. It is present in a variety of products used daily including food containers, paper, and dental sealants and is now widely detected in human urine and blood. Exposure to BPA during development may affect brain organization and behavior, perhaps as a consequence of its actions as a steroid hormone agonist/antagonist and/or an epigenetic modifier. Here we show that BPA produces transgenerational alterations in genes and behavior. Female mice received phytoestrogen-free chow with or without BPA before mating and throughout gestation. Plasma levels of BPA in supplemented dams were in a range similar to those measured in humans. Juveniles in the first generation exposed to BPA in utero displayed fewer social interactions as compared with control mice, whereas in later generations (F(2) and F(4)), the effect of BPA was to increase these social interactions. Brains from embryos (embryonic d 18.5) exposed to BPA had lower gene transcript levels for several estrogen receptors, oxytocin, and vasopressin as compared with controls; decreased vasopressin mRNA persisted into the F(4) generation, at which time oxytocin was also reduced but only in males. Thus, exposure to a low dose of BPA, only during gestation, has immediate and long-lasting, transgenerational effects on mRNA in brain and social behaviors. Heritable effects of an endocrine-disrupting chemical have implications for complex neurological diseases and highlight the importance of considering gene-environment interactions in the etiology of complex disease.


PLOS ONE | 2011

Gestational Exposure to Low Dose Bisphenol A Alters Social Behavior in Juvenile Mice

Jennifer T. Wolstenholme; Julia A. Taylor; Savera J. Shetty; Michelle Edwards; Jessica J. Connelly; Emilie F. Rissman

Bisphenol A (BPA) is a man-made compound used to make polycarbonate plastics and epoxy resins; public health concerns have been fueled by findings that BPA exposure can reduce sex differences in brain and some behaviors. We asked if a low BPA dose, within the range measured in humans, ingested during pregnancy, would affect social behaviors in prepubertal mice. We noted sex differences in social interactions whereby females spent more time sitting side-by-side, while males engaged in more exploring and sitting alone. In addition BPA increased display of nose-to-nose contacts, play solicitations and approaches in both sexes. Interactions between sex and diet were found for self grooming, social interactions while sitting side-by-side and following the other mouse. In all these cases interactions were produced by differences between control and BPA females. We examined brains from embryos during late gestation to determine if gene expression differences might be correlated with some of the sexually dimorphic or BPA affected behaviors we observed. Because BPA treatments ended at birth we took the brains during embryogenesis to increase the probability of discovering BPA mediated effects. We also selected this embryonic age (E18.5) because it coincides with the onset of sexual differentiation of the brain. Interestingly, mRNA for the glutamate transporter, Slc1a1, was enhanced by exposure to BPA in female brains. Also we noted that BPA changed the expression of two of the three DNA methyltransferase genes, Dnmt1 and Dnmt3a. We propose that BPA affects DNA methylation of Sc1a1 during neural development. Sex differences in juvenile social interactions are affected by BPA and in particular this compound modifies behavior in females.


Frontiers in Human Neuroscience | 2012

DNA methylation of the oxytocin receptor gene predicts neural response to ambiguous social stimuli

Allison Jack; Jessica J. Connelly; James P. Morris

Oxytocin and its receptor (OXTR) play an important role in a variety of social perceptual and affiliative processes. Individual variability in social information processing likely has a strong heritable component, and as such, many investigations have established an association between common genetic variants of OXTR and variability in the social phenotype. However, to date, these investigations have primarily focused only on changes in the sequence of DNA without considering the role of epigenetic factors. DNA methylation is an epigenetic mechanism by which cells control transcription through modification of chromatin structure. DNA methylation of OXTR decreases expression of the gene and high levels of methylation have been associated with autism spectrum disorders (ASD). This link between epigenetic variability and social phenotype allows for the possibility that social processes are under epigenetic control. We hypothesized that the level of DNA methylation of OXTR would predict individual variability in social perception. Using the brains sensitivity to displays of animacy as a neural endophenotype of social perception, we found significant associations between the degree of OXTR methylation and brain activity evoked by the perception of animacy. Our results suggest that consideration of DNA methylation may substantially improve our ability to explain individual differences in imaging genetic association studies.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Epigenetic modification of the oxytocin receptor gene influences the perception of anger and fear in the human brain

Meghan H. Puglia; Travis S. Lillard; James P. Morris; Jessica J. Connelly

Significance Although understanding the precise nature of oxytocin’s influence on complex human social behavior has proven difficult, increasing evidence points to an anxiolytic effect. We use an imaging epigenetic approach to further parse oxytocin’s effects by examining a biological marker within the oxytocin system, DNA methylation of the oxytocin receptor gene (OXTR). Importantly, this epigenetic modification directly impacts the expression of oxytocin’s receptor, which is critical for the actions of oxytocin to have an effect. We find that higher levels of OXTR methylation are associated with increased neural response and decreased functional coupling within regions supporting social perception and emotion processing. This pattern of activity may be indicative of diminished emotion regulation to negative stimuli and increased risk of pathology. In humans, the neuropeptide oxytocin plays a critical role in social and emotional behavior. The actions of this molecule are dependent on a protein that acts as its receptor, which is encoded by the oxytocin receptor gene (OXTR). DNA methylation of OXTR, an epigenetic modification, directly influences gene transcription and is variable in humans. However, the impact of this variability on specific social behaviors is unknown. We hypothesized that variability in OXTR methylation impacts social perceptual processes often linked with oxytocin, such as perception of facial emotions. Using an imaging epigenetic approach, we established a relationship between OXTR methylation and neural activity in response to emotional face processing. Specifically, high levels of OXTR methylation were associated with greater amounts of activity in regions associated with face and emotion processing including amygdala, fusiform, and insula. Importantly, we found that these higher levels of OXTR methylation were also associated with decreased functional coupling of amygdala with regions involved in affect appraisal and emotion regulation. These data indicate that the human endogenous oxytocin system is involved in attenuation of the fear response, corroborating research implicating intranasal oxytocin in the same processes. Our findings highlight the importance of including epigenetic mechanisms in the description of the endogenous oxytocin system and further support a central role for oxytocin in social cognition. This approach linking epigenetic variability with neural endophenotypes may broadly explain individual differences in phenotype including susceptibility or resilience to disease.


Diabetes | 2014

Exercise Prevents Maternal High-Fat Diet–Induced Hypermethylation of the Pgc-1α Gene and Age-Dependent Metabolic Dysfunction in the Offspring

Rhianna C. Laker; Travis S. Lillard; Mitsuharu Okutsu; Mei Zhang; Kyle L. Hoehn; Jessica J. Connelly; Zhen Yan

Abnormal conditions during early development adversely affect later health. We investigated whether maternal exercise could protect offspring from adverse effects of a maternal high-fat diet (HFD) with a focus on the metabolic outcomes and epigenetic regulation of the metabolic master regulator, peroxisome proliferator-activated receptor γ coactivator-1α (Pgc-1α). Female C57BL/6 mice were exposed to normal chow, an HFD, or an HFD with voluntary wheel exercise for 6 weeks before and throughout pregnancy. Methylation of the Pgc-1α promoter at CpG site −260 and expression of Pgc-1α mRNA were assessed in skeletal muscle from neonatal and 12-month-old offspring, and glucose and insulin tolerance tests were performed in the female offspring at 6, 9, and 12 months. Hypermethylation of the Pgc-1α promoter caused by a maternal HFD was detected at birth and was maintained until 12 months of age with a trend of reduced expression of Pgc-1α mRNA (P = 0.065) and its target genes. Maternal exercise prevented maternal HFD-induced Pgc-1α hypermethylation and enhanced Pgc-1α and its target gene expression, concurrent with amelioration of age-associated metabolic dysfunction at 9 months of age in the offspring. Therefore, maternal exercise is a powerful lifestyle intervention for preventing maternal HFD-induced epigenetic and metabolic dysregulation in the offspring.


Social Neuroscience | 2014

Oxytocin receptor gene variation predicts empathic concern and autonomic arousal while perceiving harm to others

Karen E. Smith; Eric C. Porges; Greg J. Norman; Jessica J. Connelly; Jean Decety

Recent research indicates that the neuropeptide oxytocin and the gene for the oxytocin receptor (OXTR) have been implicated in the modulation of various social behaviors, including those related to empathy and sensitivity to others. In this study, we examine the hypothesis that genetic variation in OXTR is associated with autonomic reactions when perceiving others in distress. We also explore the possibility that individual disposition in empathic concern would differ by OXTR genotype. To address these questions, 51 male participants (18–35 years of age), genotyped for OXTR rs53576, viewed a social interaction containing high levels of individual distress and apparent physical pain. Electrodermal activity, a measure of sympathetic nervous system activity, was collected during the presentation of the stimuli. Participants also completed a self-report dispositional measure of empathy prior to starting the study and provided ratings of arousal while viewing the stimuli. OXTR variant rs53576 GG individuals showed increased levels of sympathetic and subjective arousal in response to the stimuli compared to A allele carriers. GG homozygotes also expressed greater levels of empathic concern. These findings support the importance of the oxytocin receptor variation in emotional and physiological reactions to the affective experiences of other conspecifics.


Frontiers in Genetics | 2015

Interaction between oxytocin receptor DNA methylation and genotype is associated with risk of postpartum depression in women without depression in pregnancy

Aleeca F. Bell; C. S. Carter; Colin D. Steer; Jean Golding; John M. Davis; Alana D. Steffen; Leah H. Rubin; Travis S. Lillard; Steven Gregory; James C. Harris; Jessica J. Connelly

Postpartum depression (PPD) affects up to 19% of women, negatively impacting maternal and infant health. Reductions in plasma oxytocin levels have been associated with PPD and heritability studies have established a genetic contribution. Epigenetic regulation of the oxytocin receptor gene (OXTR) has been demonstrated and we hypothesized that individual epigenetic variability at OXTR may impact the development of PPD and that such variability may be central to predicting risk. This case-control study is nested within the Avon Longitudinal Study of Parents and Children and included 269 cases with PPD and 276 controls matched on age group, parity, and presence or absence of depressive symptoms in pregnancy as assessed by the Edinburgh Postnatal Depression Scale. OXTR DNA methylation (CpG site -934) and genotype (rs53576 and rs2254298) were assayed from DNA extracted from blood collected during pregnancy. Conditional logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association of elevated symptoms of PPD with genotype, methylation, and their interaction adjusted for psychosocial factors (n = 500). There was evidence of an interaction between rs53576 and methylation in the OXTR gene amongst women who did not have depression prenatally but developed PPD (p interaction = 0.026, adjusted for covariates, n = 257). Those women with GG genotype showed 2.63 greater odds of PPD for every 10% increase in methylation level (95% CI: 1.37, 5.03), whereas methylation was unrelated to PPD amongst “A” carriers (OR = 1.00, 95% CI: 0.58, 1.73). There was no such interaction among women with PPD and prenatal depression. These data indicate that epigenetic variation that decreases expression of OXTR in a susceptible genotype may play a contributory role in the etiology of PPD.


Frontiers in Human Neuroscience | 2015

Plasma oxytocin explains individual differences in neural substrates of social perception.

Katie Lancaster; C. Sue Carter; Hossein Pournajafi-Nazarloo; Themistoclis Karaoli; Travis S. Lillard; Allison Jack; John M. Davis; James P. Morris; Jessica J. Connelly

The neuropeptide oxytocin plays a critical role in social cognition and behavior. A number of studies using intranasal administration have demonstrated that oxytocin improves social perception. However, little is known about the relationship between individual differences in endogenous levels of oxytocin and social cognition. In the current study, we assessed the relationship between endogenous oxytocin and brain activity during an animacy perception paradigm. Thirty-seven male participants underwent scanning and provided a blood sample for oxytocin analysis. In line with previous research, perception of animacy was associated with activations in superior temporal sulcus, inferior frontal gyrus, and medial prefrontal cortex (mPFC). Notably, participants’ levels of plasma oxytocin robustly predicted activation in areas critical for social cognitive processes, such that higher oxytocin levels were related to increased activity in dorsal mPFC, ventral mPFC, dorsolateral PFC, superior temporal gyrus, and temporoparietal junction (TPJ), suggesting differential processing of social stimuli. Together these results show that stable variations in endogenous oxytocin levels explain individual differences in social perception.


Nature Medicine | 2016

Activation of the pluripotency factor OCT4 in smooth muscle cells is atheroprotective.

Olga A Cherepanova; Delphine Gomez; Laura S Shankman; Pamela Swiatlowska; Jason Williams; Olga F. Sarmento; Gabriel F. Alencar; Daniel L. Hess; Melissa H. Bevard; Elizabeth S Greene; Meera Murgai; Stephen D. Turner; Yong Jian Geng; Stefan Bekiranov; Jessica J. Connelly; Alexey Tomilin; Gary K. Owens

Although somatic cell activation of the embryonic stem cell (ESC) pluripotency factor OCT4 has been reported, this previous work has been controversial and has not demonstrated a functional role for OCT4 in somatic cells. Here we demonstrate that smooth muscle cell (SMC)-specific conditional knockout of Oct4 in Apoe−/− mice resulted in increased lesion size and changes in lesion composition that are consistent with decreased plaque stability, including a thinner fibrous cap, increased necrotic core area, and increased intraplaque hemorrhage. Results of SMC-lineage-tracing studies showed that these effects were probably the result of marked reductions in SMC numbers within lesions and SMC investment within the fibrous cap, which may result from impaired SMC migration. The reactivation of Oct4 within SMCs was associated with hydroxymethylation of the Oct4 promoter and was hypoxia inducible factor-1α (HIF-1α, encoded by HIF1A) and Krüppel-like factor-4 (KLF4)-dependent. These results provide the first direct evidence that OCT4 has a functional role in somatic cells, and they highlight the potential role of OCT4 in normal and diseased somatic cells.

Collaboration


Dive into the Jessica J. Connelly's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Sue Carter

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hossein Pournajafi-Nazarloo

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

John M. Davis

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge