Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessica L. Blois is active.

Publication


Featured researches published by Jessica L. Blois.


Science | 2013

Climate change and the past, present, and future of biotic interactions.

Jessica L. Blois; Phoebe L. Zarnetske; Matthew C. Fitzpatrick; Seth Finnegan

Biotic interactions drive key ecological and evolutionary processes and mediate ecosystem responses to climate change. The direction, frequency, and intensity of biotic interactions can in turn be altered by climate change. Understanding the complex interplay between climate and biotic interactions is thus essential for fully anticipating how ecosystems will respond to the fast rates of current warming, which are unprecedented since the end of the last glacial period. We highlight episodes of climate change that have disrupted ecosystems and trophic interactions over time scales ranging from years to millennia by changing species’ relative abundances and geographic ranges, causing extinctions, and creating transient and novel communities dominated by generalist species and interactions. These patterns emerge repeatedly across disparate temporal and spatial scales, suggesting the possibility of similar underlying processes. Based on these findings, we identify knowledge gaps and fruitful areas for research that will further our understanding of the effects of climate change on ecosystems.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Space can substitute for time in predicting climate-change effects on biodiversity

Jessica L. Blois; John W. Williams; Matthew C. Fitzpatrick; Stephen T. Jackson; Simon Ferrier

“Space-for-time” substitution is widely used in biodiversity modeling to infer past or future trajectories of ecological systems from contemporary spatial patterns. However, the foundational assumption—that drivers of spatial gradients of species composition also drive temporal changes in diversity—rarely is tested. Here, we empirically test the space-for-time assumption by constructing orthogonal datasets of compositional turnover of plant taxa and climatic dissimilarity through time and across space from Late Quaternary pollen records in eastern North America, then modeling climate-driven compositional turnover. Predictions relying on space-for-time substitution were ∼72% as accurate as “time-for-time” predictions. However, space-for-time substitution performed poorly during the Holocene when temporal variation in climate was small relative to spatial variation and required subsampling to match the extent of spatial and temporal climatic gradients. Despite this caution, our results generally support the judicious use of space-for-time substitution in modeling community responses to climate change.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Global climate evolution during the last deglaciation

Peter U. Clark; Jeremy D. Shakun; Paul A. Baker; Patrick J. Bartlein; Simon Brewer; Edward J. Brook; Anders E. Carlson; Hai Cheng; Darrell S. Kaufman; Zhengyu Liu; Thomas M. Marchitto; Alan C. Mix; Carrie Morrill; Bette L. Otto-Bliesner; Katharina Pahnke; J. M. Russell; Cathy Whitlock; Jess F. Adkins; Jessica L. Blois; Jorie Clark; Steven M. Colman; William B. Curry; Ben P. Flower; Feng He; Thomas C. Johnson; Jean Lynch-Stieglitz; Vera Markgraf; Jerry F. McManus; Jerry X. Mitrovica; Patricio I. Moreno

Deciphering the evolution of global climate from the end of the Last Glacial Maximum approximately 19 ka to the early Holocene 11 ka presents an outstanding opportunity for understanding the transient response of Earth’s climate system to external and internal forcings. During this interval of global warming, the decay of ice sheets caused global mean sea level to rise by approximately 80 m; terrestrial and marine ecosystems experienced large disturbances and range shifts; perturbations to the carbon cycle resulted in a net release of the greenhouse gases CO2 and CH4 to the atmosphere; and changes in atmosphere and ocean circulation affected the global distribution and fluxes of water and heat. Here we summarize a major effort by the paleoclimate research community to characterize these changes through the development of well-dated, high-resolution records of the deep and intermediate ocean as well as surface climate. Our synthesis indicates that the superposition of two modes explains much of the variability in regional and global climate during the last deglaciation, with a strong association between the first mode and variations in greenhouse gases, and between the second mode and variations in the Atlantic meridional overturning circulation.


New Phytologist | 2014

Climate refugia: joint inference from fossil records, species distribution models and phylogeography

Daniel G. Gavin; Matthew C. Fitzpatrick; Paul F. Gugger; Katy D. Heath; Francisco Rodríguez-Sánchez; Solomon Z. Dobrowski; Arndt Hampe; Feng Sheng Hu; Michael B. Ashcroft; Patrick J. Bartlein; Jessica L. Blois; Bryan C. Carstens; Edward Byrd Davis; Guillaume de Lafontaine; Mary E. Edwards; Matias Fernandez; Paul D. Henne; Erin M. Herring; Zachary A. Holden; Woo-Seok Kong; Jianquan Liu; Donatella Magri; Nicholas J. Matzke; Matt S. McGlone; Frédérik Saltré; Alycia L. Stigall; Yi-Hsin Erica Tsai; John W. Williams

Climate refugia, locations where taxa survive periods of regionally adverse climate, are thought to be critical for maintaining biodiversity through the glacial-interglacial climate changes of the Quaternary. A critical research need is to better integrate and reconcile the three major lines of evidence used to infer the existence of past refugia - fossil records, species distribution models and phylogeographic surveys - in order to characterize the complex spatiotemporal trajectories of species and populations in and out of refugia. Here we review the complementary strengths, limitations and new advances for these three approaches. We provide case studies to illustrate their combined application, and point the way towards new opportunities for synthesizing these disparate lines of evidence. Case studies with European beech, Qinghai spruce and Douglas-fir illustrate how the combination of these three approaches successfully resolves complex species histories not attainable from any one approach. Promising new statistical techniques can capitalize on the strengths of each method and provide a robust quantitative reconstruction of species history. Studying past refugia can help identify contemporary refugia and clarify their conservation significance, in particular by elucidating the fine-scale processes and the particular geographic locations that buffer species against rapidly changing climate.


Nature | 2010

Small mammal diversity loss in response to late-Pleistocene climatic change.

Jessica L. Blois; Jenny L. McGuire; Elizabeth A. Hadly

Communities have been shaped in numerous ways by past climatic change; this process continues today. At the end of the Pleistocene epoch about 11,700 years ago, North American communities were substantially altered by the interplay of two events. The climate shifted from the cold, arid Last Glacial Maximum to the warm, mesic Holocene interglacial, causing many mammal species to shift their geographic distributions substantially. Populations were further stressed as humans arrived on the continent. The resulting megafaunal extinction event, in which 70 of the roughly 220 largest mammals in North America (32%) became extinct, has received much attention. However, responses of small mammals to events at the end of the Pleistocene have been much less studied, despite the sensitivity of these animals to current and future environmental change. Here we examine community changes in small mammals in northern California during the last ‘natural’ global warming event at the Pleistocene–Holocene transition and show that even though no small mammals in the local community became extinct, species losses and gains, combined with changes in abundance, caused declines in both the evenness and richness of communities. Modern mammalian communities are thus depauperate not only as a result of megafaunal extinctions at the end of the Pleistocene but also because of diversity loss among small mammals. Our results suggest that across future landscapes there will be some unanticipated effects of global change on diversity: restructuring of small mammal communities, significant loss of richness, and perhaps the rising dominance of native ‘weedy’ species.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Community ecology in a changing environment: Perspectives from the Quaternary

Stephen T. Jackson; Jessica L. Blois

Community ecology and paleoecology are both concerned with the composition and structure of biotic assemblages but are largely disconnected. Community ecology focuses on existing species assemblages and recently has begun to integrate history (phylogeny and continental or intercontinental dispersal) to constrain community processes. This division has left a “missing middle”: Ecological and environmental processes occurring on timescales from decades to millennia are not yet fully incorporated into community ecology. Quaternary paleoecology has a wealth of data documenting ecological dynamics at these timescales, and both fields can benefit from greater interaction and articulation. We discuss ecological insights revealed by Quaternary terrestrial records, suggest foundations for bridging between the disciplines, and identify topics where the disciplines can engage to mutual benefit.


Nature | 2016

Holocene shifts in the assembly of plant and animal communities implicate human impacts.

S. Kathleen Lyons; Kathryn L. Amatangelo; Anna K. Behrensmeyer; Antoine Bercovici; Jessica L. Blois; Matthew J. Davis; William A. DiMichele; Andrew Du; Jussi T. Eronen; J. Tyler Faith; Gary R. Graves; Nathan A. Jud; Conrad C. Labandeira; Cindy V. Looy; Brian J. McGill; Joshua H. Miller; David Patterson; Silvia Pineda-Munoz; Richard Potts; Brett R. Riddle; Rebecca C. Terry; Anikó Tóth; Werner Ulrich; Amelia Villaseñor; Scott L. Wing; Heidi M. Anderson; John Anderson; Donald M. Waller; Nicholas J. Gotelli

Understanding how ecological communities are organized and how they change through time is critical to predicting the effects of climate change. Recent work documenting the co-occurrence structure of modern communities found that most significant species pairs co-occur less frequently than would be expected by chance. However, little is known about how co-occurrence structure changes through time. Here we evaluate changes in plant and animal community organization over geological time by quantifying the co-occurrence structure of 359,896 unique taxon pairs in 80 assemblages spanning the past 300 million years. Co-occurrences of most taxon pairs were statistically random, but a significant fraction were spatially aggregated or segregated. Aggregated pairs dominated from the Carboniferous period (307 million years ago) to the early Holocene epoch (11,700 years before present), when there was a pronounced shift to more segregated pairs, a trend that continues in modern assemblages. The shift began during the Holocene and coincided with increasing human population size and the spread of agriculture in North America. Before the shift, an average of 64% of significant pairs were aggregated; after the shift, the average dropped to 37%. The organization of modern and late Holocene plant and animal assemblages differs fundamentally from that of assemblages over the past 300 million years that predate the large-scale impacts of humans. Our results suggest that the rules governing the assembly of communities have recently been changed by human activity.Understanding how ecological communities are organized and how they change through time is critical to predicting the effects of climate change. Recent work documenting the co-occurrence structure of modern communities found that most significant species pairs co-occur less frequently than would be expected by chance. However, little is known about how co-occurrence structure changes through time. Here we evaluate changes in plant and animal community organization over geological time by quantifying the co-occurrence structure of 359,896 unique taxon pairs in 80 assemblages spanning the past 300 million years. Co-occurrences of most taxon pairs were statistically random, but a significant fraction were spatially aggregated or segregated. Aggregated pairs dominated from the Carboniferous period (307 million years ago) to the early Holocene epoch (11,700 years before present), when there was a pronounced shift to more segregated pairs, a trend that continues in modern assemblages. The shift began during the Holocene and coincided with increasing human population size and the spread of agriculture in North America. Before the shift, an average of 64% of significant pairs were aggregated; after the shift, the average dropped to 37%. The organization of modern and late Holocene plant and animal assemblages differs fundamentally from that of assemblages over the past 300 million years that predate the large-scale impacts of humans. Our results suggest that the rules governing the assembly of communities have recently been changed by human activity.


Science | 2017

Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems

Anthony D. Barnosky; Elizabeth A. Hadly; Patrick Gonzalez; Jason J. Head; P. David Polly; A. Michelle Lawing; Jussi T. Eronen; David D. Ackerly; Ken Alex; Eric Biber; Jessica L. Blois; Justin S. Brashares; Gerardo Ceballos; Edward Byrd Davis; Gregory P. Dietl; Rodolfo Dirzo; Holly Doremus; Mikael Fortelius; Harry W. Greene; Jessica J. Hellmann; Thomas Hickler; Stephen T. Jackson; Melissa E. Kemp; Paul L. Koch; Claire Kremen; Emily L. Lindsey; Cindy V. Looy; Charles R. Marshall; Chase D. Mendenhall; Andreas Mulch

Looking back to move forward The current impacts of humanity on nature are rapid and destructive, but species turnover and change have occurred throughout the history of life. Although there is much debate about the best approaches to take in conservation, ultimately, we need to permit or enhance the resilience of natural systems so that they can continue to adapt and function into the future. In a Review, Barnosky et al. argue that the best way to do this is to look back at paleontological history as a way to understand how ecological resilience is maintained, even in the face of change. Science, this issue p. eaah4787 BACKGROUND The pace and magnitude of human-caused global change has accelerated dramatically over the past 50 years, overwhelming the capacity of many ecosystems and species to maintain themselves as they have under the more stable conditions that prevailed for at least 11,000 years. The next few decades threaten even more rapid transformations because by 2050, the human population is projected to grow by 3 billion while simultaneously increasing per capita consumption. Thus, to avoid losing many species and the crucial aspects of ecosystems that we need—for both our physical and emotional well-being—new conservation paradigms and integration of information from conservation biology, paleobiology, and the Earth sciences are required. ADVANCES Rather than attempting to hold ecosystems to an idealized conception of the past, as has been the prevailing conservation paradigm until recently, maintaining vibrant ecosystems for the future now requires new approaches that use both historical and novel conservation landscapes, enhance adaptive capacity for ecosystems and organisms, facilitate connectedness, and manage ecosystems for functional integrity rather than focusing entirely on particular species. Scientific breakthroughs needed to underpin such a paradigm shift are emerging at the intersection of ecology and paleobiology, revealing (i) which species and ecosystems will need human intervention to persist; (ii) how to foster population connectivity that anticipates rapidly changing climate and land use; (iii) functional attributes that characterize ecosystems through thousands to millions of years, irrespective of the species that are involved; and (iv) the range of compositional and functional variation that ecosystems have exhibited over their long histories. Such information is necessary for recognizing which current changes foretell transitions to less robust ecological states and which changes may signal benign ecosystem shifts that will cause no substantial loss of ecosystem function or services. Conservation success will also increasingly hinge on choosing among different, sometimes mutually exclusive approaches to best achieve three conceptually distinct goals: maximizing biodiversity, maximizing ecosystem services, and preserving wilderness. These goals vary in applicability depending on whether historical or novel ecosystems are the conservation target. Tradeoffs already occur—for example, managing to maximize certain ecosystem services upon which people depend (such as food production on farm or rangelands) versus maintaining healthy populations of vulnerable species (such as wolves, lions, or elephants). In the future, the choices will be starker, likely involving decisions such as which species are candidates for managed relocation and to which areas, and whether certain areas should be off limits for intensive management, even if it means losing some species that now live there. Developing the capacity to make those choices will require conservation in both historical and novel ecosystems and effective collaboration of scientists, governmental officials, nongovernmental organizations, the legal community, and other stakeholders. OUTLOOK Conservation efforts are currently in a state of transition, with active debate about the relative importance of preserving historical landscapes with minimal human impact on one end of the ideological spectrum versus manipulating novel ecosystems that result from human activities on the other. Although the two approaches are often presented as dichotomous, in fact they are connected by a continuum of practices, and both are needed. In most landscapes, maximizing conservation success will require more integration of paleobiology and conservation biology because in a rapidly changing world, a long-term perspective (encompassing at least millennia) is necessary to specify and select appropriate conservation targets and plans. Although adding this long-term perspective will be essential to sustain biodiversity and all of the facets of nature that humans need as we continue to rapidly change the world over the next few decades, maximizing the chances of success will also require dealing with the root causes of the conservation crisis: rapid growth of the human population, increasing per capita consumption especially in developed countries, and anthropogenic climate change that is rapidly pushing habitats outside the bounds experienced by today’s species. Fewer than 900 mountain gorillas are left in the world, and their continued existence depends upon the choices humans make, exemplifying the state of many species and ecosystems. Can conservation biology save biodiversity and all the aspects of nature that people need and value as 3 billion more of us are added to the planet by 2050, while climate continues to change to states outside the bounds that most of today’s ecosystems have ever experienced? Photo: E. A. Hadly, at Volcanoes National Park, Rwanda Conservation of species and ecosystems is increasingly difficult because anthropogenic impacts are pervasive and accelerating. Under this rapid global change, maximizing conservation success requires a paradigm shift from maintaining ecosystems in idealized past states toward facilitating their adaptive and functional capacities, even as species ebb and flow individually. Developing effective strategies under this new paradigm will require deeper understanding of the long-term dynamics that govern ecosystem persistence and reconciliation of conflicts among approaches to conserving historical versus novel ecosystems. Integrating emerging information from conservation biology, paleobiology, and the Earth sciences is an important step forward on the path to success. Maintaining nature in all its aspects will also entail immediately addressing the overarching threats of growing human population, overconsumption, pollution, and climate change.


Annals of the New York Academy of Sciences | 2013

Model systems for a no-analog future: species associations and climates during the last deglaciation

John W. Williams; Jessica L. Blois; Jacquelyn L. Gill; Leila M. Gonzales; Eric C. Grimm; Alejandro Ordonez; Bryan N. Shuman; Samuel D. Veloz

As the earth system moves to a novel state, model systems (experimental, observational, paleoecological) are needed to assess and improve the predictive accuracy of ecological models under environments with no contemporary analog. In recent years, we have intensively studied the no‐analog plant associations and climates in eastern North America during the last deglaciation to better constrain their spatiotemporal distribution, test hypotheses about climatic and megaherbivory controls, and assess the accuracy of species‐ and community‐level models. The formation of no‐analog plant associations was asynchronous, beginning first in the south‐central United States; at sites in the north‐central United States, it is linked to declining megafaunal abundances. Insolation and temperature were more seasonal than present, creating climates currently nonexistent in North America, and shifting species–climate relationships for some taxa. These shifts pose a common challenge to empirical paleoclimatic reconstructions, species distribution models (SDMs), and conservation–optimization models based on SDMs. Steps forward include combining recent and paleoecological data to more fully describe species’ fundamental niches, employing community‐level models to model shifts in species interactions under no‐analog climates, and assimilating paleoecological data with mechanistic ecosystem models. Accurately modeling species interactions under novel environments remains a fundamental challenge for all forms of ecological models.


Proceedings of the Royal Society B: Biological Sciences | 2016

Controlled comparison of species- and community-level models across novel climates and communities.

Kaitlin C. Maguire; Diego Nieto-Lugilde; Jessica L. Blois; Matthew C. Fitzpatrick; John W. Williams; Simon Ferrier; David J. Lorenz

Species distribution models (SDMs) assume species exist in isolation and do not influence one anothers distributions, thus potentially limiting their ability to predict biodiversity patterns. Community-level models (CLMs) capitalize on species co-occurrences to fit shared environmental responses of species and communities, and therefore may result in more robust and transferable models. Here, we conduct a controlled comparison of five paired SDMs and CLMs across changing climates, using palaeoclimatic simulations and fossil-pollen records of eastern North America for the past 21 000 years. Both SDMs and CLMs performed poorly when projected to time periods that are temporally distant and climatically dissimilar from those in which they were fit; however, CLMs generally outperformed SDMs in these instances, especially when models were fit with sparse calibration datasets. Additionally, CLMs did not over-fit training data, unlike SDMs. The expected emergence of novel climates presents a major forecasting challenge for all models, but CLMs may better rise to this challenge by borrowing information from co-occurring taxa.

Collaboration


Dive into the Jessica L. Blois's collaboration.

Top Co-Authors

Avatar

John W. Williams

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Matthew C. Fitzpatrick

University of Maryland Center for Environmental Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Du

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Cindy V. Looy

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen T. Jackson

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Anna K. Behrensmeyer

National Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge