Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessica L. Childs-Disney is active.

Publication


Featured researches published by Jessica L. Childs-Disney.


Journal of the American Chemical Society | 2009

Rational design of ligands targeting triplet repeating transcripts that cause RNA dominant disease: Application to myotonic muscular dystrophy type 1 and spinocerebellar ataxia type 3

Alexei Pushechnikov; Melissa M. Lee; Jessica L. Childs-Disney; Krzysztof Sobczak; Jonathan M. French; Charles A. Thornton; Matthew D. Disney

Herein, we describe the design of high affinity ligands that bind expanded rCUG and rCAG repeat RNAs expressed in myotonic dystrophy type 1 (DM1) and spinocerebellar ataxia type 3. These ligands also inhibit, with nanomolar IC(50) values, the formation of RNA-protein complexes that are implicated in both disorders. The expanded rCUG and rCAG repeats form stable RNA hairpins with regularly repeating internal loops in the stem and have deleterious effects on cell function. The ligands that bind the repeats display a derivative of the bisbenzimidazole Hoechst 33258, which was identified by searching known RNA-ligand interactions for ligands that bind the internal loop displayed in these hairpins. A series of 13 modularly assembled ligands with defined valencies and distances between ligand modules was synthesized to target multiple motifs in these RNAs simultaneously. The most avid binder, a pentamer, binds the rCUG repeat hairpin with a K(d) of 13 nM. When compared to a series of related RNAs, the pentamer binds to rCUG repeats with 4.4- to >200-fold specificity. Furthermore, the affinity of binding to rCUG repeats shows incremental gains with increasing valency, while the background binding to genomic DNA is correspondingly reduced. Then, it was determined whether the modularly assembled ligands inhibit the recognition of RNA repeats by Muscleblind-like 1 (MBNL1) protein, the expanded-rCUG binding protein whose sequestration leads to splicing defects in DM1. Among several compounds with nanomolar IC(50) values, the most potent inhibitor is the pentamer, which also inhibits the formation of rCAG repeat-MBNL1 complexes. Comparison of the binding data for the designed synthetic ligands and MBNL1 to repeating RNAs shows that the synthetic ligand is 23-fold higher affinity and more specific to DM1 RNAs than MBNL1. Further studies show that the designed ligands are cell permeable to mouse myoblasts. Thus, cell permeable ligands that bind repetitive RNAs have been designed that exhibit higher affinity and specificity for binding RNA than natural proteins. These studies suggest a general approach to targeting RNA, including those that cause RNA dominant disease.


Journal of the American Chemical Society | 2008

Two-Dimensional Combinatorial Screening Identifies Specific Aminoglycoside−RNA Internal Loop Partners

Matthew D. Disney; Lucas P. Labuda; Dustin J. Paul; Shane G. Poplawski; Alexei Pushechnikov; Tuan Tran; Sai Pradeep Velagapudi; Meilan Wu; Jessica L. Childs-Disney

Herein is described the identification of RNA internal loops that bind to derivatives of neomycin B, neamine, tobramycin, and kanamycin A. RNA loop-ligand partners were identified by a two-dimensional combinatorial screening (2DCS) platform that probes RNA and chemical spaces simultaneously. In 2DCS, an aminoglycoside library immobilized onto an agarose microarray was probed for binding to a 3 x 3 nucleotide RNA internal loop library (81,920 interactions probed in duplicate in a single experiment). RNAs that bound aminoglycosides were harvested from the array via gel excision. RNA internal loop preferences for three aminoglycosides were identified from statistical analysis of selected structures. This provides consensus RNA internal loops that bind these structures and include: loops with potential GA pairs for the neomycin derivative, loops with potential GG pairs for the tobramycin derivative, and pyrimidine-rich loops for the kanamycin A derivative. Results with the neamine derivative show that it binds a variety of loops, including loops that contain potential GA pairs that also recognize the neomycin B derivative. All studied selected internal loops are specific for the aminoglycoside that they were selected to bind. Specificity was quantified for 16 selected internal loops by studying their binding to each of the arrayed aminoglycosides. Specificities ranged from 2- to 80-fold with an average specificity of 20-fold. These studies show that 2DCS is a unique platform to probe RNA and chemical space simultaneously to identify specific RNA motif-ligand interactions.


Nature Communications | 2013

Induction and reversal of myotonic dystrophy type 1 pre-mRNA splicing defects by small molecules

Jessica L. Childs-Disney; Ewa Stepniak-Konieczna; Tuan Tran; Ilyas Yildirim; HaJeung Park; Catherine Z. Chen; Jason Hoskins; Noel Southall; Juan J. Marugan; Samarjit Patnaik; Wei Zheng; Christopher P. Austin; George C. Schatz; Krzysztof Sobczak; Charles A. Thornton; Matthew D. Disney

The ability to control pre-mRNA splicing with small molecules could facilitate the development of therapeutics or cell-based circuits that control gene function. Myotonic dystrophy type 1 (DM1) is caused by the dysregulation of alternative pre-mRNA splicing due to sequestration of muscleblind-like 1 protein (MBNL1) by expanded, non-coding r(CUG) repeats (r(CUG)exp). Here we report two small molecules that induce or ameliorate alternative splicing dysregulation. The thiophene-containing small molecule (1) inhibits the interaction of MBNL1 with its natural pre-mRNA substrates. Compound (2), a substituted naphthyridine, binds r(CUG)exp and displaces MBNL1. Structural models show that 1 binds MBNL1 in the Zn-finger domain and that 2 interacts with UU loops in r(CUG)exp. This study provides a structural framework for small molecules that target MBNL1 by mimicking r(CUG)exp and shows that targeting MBNL1 causes dysregulation of alternative splicing, suggesting that MBNL1 is thus not a suitable therapeutic target for the treatment of DM1.


ChemBioChem | 2007

Using selection to identify and chemical microarray to study the RNA internal loops recognized by 6'-N-acylated kanamycin A.

Matthew D. Disney; Jessica L. Childs-Disney

Herein, we describe our initial steps towards identifying the RNA secondary structure motifs that are recognized by small molecules. We selected members of an RNA 3×3 internal loop motif library that bind kanamycin A, an RNA‐binding aminoglycoside antibiotic, by using only one round of selection. A small internal‐loop library was chosen because members are likely to be present in other larger, biologically relevant RNAs. We have identified several internal loops of various size and base composition that kanamycin A prefers to bind. The highest affinity structures are two 5′‐UU/3′‐CU 2×2 internal loops closed by AU pairs. Binding is specific for the selected internal loops with the highest affinities, since binding to the RNA cassette used to display the library or to DNA is >150‐fold weaker. Enzymatic mapping experiments also confirm binding of kanamycin A to the internal loops. This method lays the foundation for finding RNA secondary structure elements that bind small molecules and for interrogating factors affecting RNA–ligand interactions. Information from these and subsequent studies will: 1) facilitate the rational and modular design of drugs or probes that bind target RNAs with high affinity, provided the secondary structure of the target is known and 2) give insight into the potential bystander RNAs that aminoglycosides bind.


ChemBioChem | 2010

The Role of Flexibility in the Rational Design of Modularly Assembled Ligands Targeting the RNAs that Cause the Myotonic Dystrophies

Matthew D. Disney; Melissa M. Lee; Alexei Pushechnikov; Jessica L. Childs-Disney

Modularly assembled ligands were designed to target the RNAs that cause two currently untreatable neuromuscular disorders, myotonic dystrophy types 1 (DM1) and 2 (DM2). DM1 is caused by an expanded repeating sequence of CUG, and DM2 is caused by expanded CCUG repeats. Both are present in noncoding regions and fold into hairpins with either repeating 1×1 nucleotide UU (DM1) or 2×2 nucleotide 5′‐CU/3′‐UC (DM2) internal loops separated by two GC pairs. The repeats are toxic because they sequester the RNA splicing regulator muscleblind‐like 1 protein (MBNL1). Rational design of ligands targeting these RNAs was enabled by a database of RNA motif–ligand partners compiled by using two‐dimensional combinatorial screening (2DCS). One 2DCS study found that the 6′′‐azido‐kanamycin A module binds internal loops similar to those found in DM1 and DM2. In order to further enhance affinity and specificity, the ligand was assembled on a peptoid backbone to precisely control valency and the distance between ligand modules. Designed compounds are more potent and specific binders to the toxic RNAs than MBNL1 and inhibit the formation of the RNA–protein complexes with nanomolar IC50 values. This study shows that three important factors govern potent inhibition: 1) the surface area sequestered by the assembled ligands; 2) the spacing between ligand modules since a longer distance is required to target DM2 RNAs than DM1 RNAs; and 3) flexibility in the modular assembly scaffold used to display the RNA‐binding module. These results have impacts on the general design of assembled ligands targeting RNAs present in genomic sequence.


ACS Chemical Biology | 2014

Targeting the r(CGG) Repeats That Cause FXTAS with Modularly Assembled Small Molecules and Oligonucleotides

Tuan Tran; Jessica L. Childs-Disney; Biao Liu; Lirui Guan; Suzanne G. Rzuczek; Matthew D. Disney

We designed small molecules that bind the structure of the RNA that causes fragile X-associated tremor ataxia syndrome (FXTAS), an incurable neuromuscular disease. FXTAS is caused by an expanded r(CGG) repeat (r(CGG)exp) that inactivates a protein regulator of alternative pre-mRNA splicing. Our designed compounds modulate r(CGG)exp toxicity in cellular models of FXTAS, and pull-down experiments confirm that they bind r(CGG)expin vivo. Importantly, compound binding does not affect translation of the downstream open reading frame (ORF). We compared molecular recognition properties of our optimal compound to oligonucleotides. Studies show that r(CGG)exp’s self-structure is a significant energetic barrier for oligonucleotide binding. A fully modified 2′-OMethyl phosphorothioate is incapable of completely reversing an FXTAS-associated splicing defect and inhibits translation of the downstream ORF, which could have deleterious effects. Taken together, these studies suggest that a small molecule that recognizes structure may be more well suited for targeting highly structured RNAs that require strand invasion by a complementary oligonucleotide.


ACS Chemical Biology | 2016

Inforna 2.0: A Platform for the Sequence-Based Design of Small Molecules Targeting Structured RNAs

Matthew D. Disney; Audrey M. Winkelsas; Sai Pradeep Velagapudi; Mark R. Southern; Mohammad Fallahi; Jessica L. Childs-Disney

The development of small molecules that target RNA is challenging yet, if successful, could advance the development of chemical probes to study RNA function or precision therapeutics to treat RNA-mediated disease. Previously, we described Inforna, an approach that can mine motifs (secondary structures) within target RNAs, which is deduced from the RNA sequence, and compare them to a database of known RNA motif-small molecule binding partners. Output generated by Inforna includes the motif found in both the database and the desired RNA target, lead small molecules for that target, and other related meta-data. Lead small molecules can then be tested for binding and affecting cellular (dys)function. Herein, we describe Inforna 2.0, which incorporates all known RNA motif-small molecule binding partners reported in the scientific literature, a chemical similarity searching feature, and an improved user interface and is freely available via an online web server. By incorporation of interactions identified by other laboratories, the database has been doubled, containing 1936 RNA motif-small molecule interactions, including 244 unique small molecules and 1331 motifs. Interestingly, chemotype analysis of the compounds that bind RNA in the database reveals features in small molecule chemotypes that are privileged for binding. Further, this updated database expanded the number of cellular RNAs to which lead compounds can be identified.


Journal of the American Chemical Society | 2017

Small Molecule Inhibition of microRNA-210 Reprograms an Oncogenic Hypoxic Circuit

Matthew G. Costales; Christopher L. Haga; Sai Pradeep Velagapudi; Jessica L. Childs-Disney; Donald G. Phinney; Matthew D. Disney

A hypoxic state is critical to the metastatic and invasive characteristics of cancer. Numerous pathways play critical roles in cancer maintenance, many of which include noncoding RNAs such as microRNA (miR)-210 that regulates hypoxia inducible factors (HIFs). Herein, we describe the identification of a small molecule named Targapremir-210 that binds to the Dicer site of the miR-210 hairpin precursor. This interaction inhibits production of the mature miRNA, derepresses glycerol-3-phosphate dehydrogenase 1-like enzyme (GPD1L), a hypoxia-associated protein negatively regulated by miR-210, decreases HIF-1α, and triggers apoptosis of triple negative breast cancer cells only under hypoxic conditions. Further, Targapremir-210 inhibits tumorigenesis in a mouse xenograft model of hypoxic triple negative breast cancer. Many factors govern molecular recognition of biological targets by small molecules. For protein, chemoproteomics and activity-based protein profiling are invaluable tools to study small molecule target engagement and selectivity in cells. Such approaches are lacking for RNA, leaving a void in the understanding of its druggability. We applied Chemical Cross-Linking and Isolation by Pull Down (Chem-CLIP) to study the cellular selectivity and the on- and off-targets of Targapremir-210. Targapremir-210 selectively recognizes the miR-210 precursor and can differentially recognize RNAs in cells that have the same target motif but have different expression levels, revealing this important feature for selectively drugging RNAs for the first time. These studies show that small molecules can be rapidly designed to selectively target RNAs and affect cellular responses to environmental conditions, resulting in favorable benefits against cancer. Further, they help define rules for identifying druggable targets in the transcriptome.


ChemBioChem | 2011

Using modularly assembled ligands to bind RNA internal loops separated by different distances.

Jessica L. Childs-Disney; Pavel B. Tsitovich; Matthew D. Disney

Many studies have identified RNA drug or probe targets present in genomic sequence, however, most of these RNAs remain underexploited due to the difficulties in designing high affinity and specific RNA binders. Modular assembly and multivalency provide unique opportunities to tune the affinity and specificity of ligands for a target biomolecule. Herein, studies to investigate how far ligand modules should be spaced apart to bind RNA internal loops separated by different numbers of base pairs are reported. Results show that about four spacing submonomers between bis-benzimidazole modules displayed on a peptoid scaffold is optimal to span two base pairs. These results have general implications for the rational and modular design of ligands that specifically target RNA.


ACS central science | 2017

Defining RNA–Small Molecule Affinity Landscapes Enables Design of a Small Molecule Inhibitor of an Oncogenic Noncoding RNA

Sai Pradeep Velagapudi; Yiling Luo; Tuan Tran; Hafeez S. Haniff; Yoshio Nakai; Mohammad Fallahi; Gustavo J. Martinez; Jessica L. Childs-Disney; Matthew D. Disney

RNA drug targets are pervasive in cells, but methods to design small molecules that target them are sparse. Herein, we report a general approach to score the affinity and selectivity of RNA motif–small molecule interactions identified via selection. Named High Throughput Structure–Activity Relationships Through Sequencing (HiT-StARTS), HiT-StARTS is statistical in nature and compares input nucleic acid sequences to selected library members that bind a ligand via high throughput sequencing. The approach allowed facile definition of the fitness landscape of hundreds of thousands of RNA motif–small molecule binding partners. These results were mined against folded RNAs in the human transcriptome and identified an avid interaction between a small molecule and the Dicer nuclease-processing site in the oncogenic microRNA (miR)-18a hairpin precursor, which is a member of the miR-17-92 cluster. Application of the small molecule, Targapremir-18a, to prostate cancer cells inhibited production of miR-18a from the cluster, de-repressed serine/threonine protein kinase 4 protein (STK4), and triggered apoptosis. Profiling the cellular targets of Targapremir-18a via Chemical Cross-Linking and Isolation by Pull Down (Chem-CLIP), a covalent small molecule–RNA cellular profiling approach, and other studies showed specific binding of the compound to the miR-18a precursor, revealing broadly applicable factors that govern small molecule drugging of noncoding RNAs.

Collaboration


Dive into the Jessica L. Childs-Disney's collaboration.

Top Co-Authors

Avatar

Matthew D. Disney

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Tuan Tran

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles A. Thornton

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Alexei Pushechnikov

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Biao Liu

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krzysztof Sobczak

Adam Mickiewicz University in Poznań

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

HaJeung Park

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge